摘要:
A method and a structure are disclosed relating to strained body UTSOI FET devices. The method includes forming voids in the source/drain regions that penetrate down into the substrate below the insulating layer. The voids are epitaxially filled with a semiconductor material of a differing lattice constant than the one of the SOI layer, thus becoming a stressor block, and imparts a strain onto the FET device body.
摘要:
A method is disclosed which is characterized as being process integration of raised source/drain and strained body for ultra thin planar and FinFET CMOS devices. NFET and PFET devices have their source/drain raised by selective epitaxy with in-situ p-type doped SiGe for the PFET device, and in-situ n-type doped Si:C for the NFET device. Such raised source/drains offer low parasitic resistance and they impart a strain onto the device bodies of the correct sign for respective carrier, electron or hole, mobility enhancement.
摘要:
An FET device structure has a Fin-FET device with a fin of a Si based material. An oxide element is abutting the fin and exerts pressure onto the fin. The Fin-FET device channel is compressively stressed due to the pressure on the fin. A further FET device structure has Fin-FET devices in a row. An oxide element extending perpendicularly to the row of fins is abutting the fins and exerts pressure onto the fins. Device channels of the Fin-FET devices are compressively stressed due to the pressure on the fins.
摘要:
A semiconductor device and fabrication method include a strained semiconductor layer having a strain in one axis. A long fin and a short fin are formed in the semiconductor layer such that the long fin has a strained length along the one axis. An n-type transistor is formed on the long fin, and a p-type transistor is formed on the at least one short fin. The strain in the n-type transistor improves performance.
摘要:
A method for fabricating an FET device is disclosed. The method includes Fin-FET devices with fins that are composed of a first material, and then merged together by epitaxial deposition of a second material. The fins are vertically recesses using a selective etch. A continuous silicide layer is formed over the increased surface areas of the first material and the second material, leading to smaller resistance. A stress liner overlaying the FET device is afterwards deposited. An FET device is also disclosed, which FET device includes a plurality of Fin-FET devices, the fins of which are composed of a first material. The FET device includes a second material, which is epitaxially merging the fins. The fins are vertically recessed relative to an upper surface of the second material. The FET device furthermore includes a continuous silicide layer formed over the fins and over the second material, and a stress liner covering the device.
摘要:
A semiconductor device and a method of fabricating a semiconductor device are disclosed. In one embodiment, the method comprises providing a semiconductor substrate, epitaxially growing a Ge layer on the substrate, and epitaxially growing a semiconductor layer on the Ge layer, where the semiconductor layer has a thickness of 10 nm or less. This method further comprises removing at least a portion of the Ge layer to form a void beneath the Si layer, and filling the void at least partially with a dielectric material. In this way, the semiconductor layer becomes an extremely thin semiconductor-on-insulator layer. In one embodiment, after the void is filled with the dielectric material, in-situ doped source and drain regions are grown on the semiconductor layer. In one embodiment, the method further comprises annealing said source and drain regions to form doped extension regions in the semiconductor layer. Epitaxially growing the extremely thin semiconductor layer on the Ge layer ensures good thickness control across the wafer. This process could be used for SOI or bulk wafers.
摘要:
A method of fabricating a semiconductor device is provided in which the channel of the device is present in an extremely thin semiconductor-on-insulator (ETSOI) layer, i.e., a semiconductor layer having a thickness of less than 20 nm. In one embodiment, the method begins with forming a first semiconductor layer and epitaxially growing a second semiconductor layer on a handling substrate. A first gate structure is formed on a first surface of the second semiconductor layer and source regions and drain regions are formed adjacent to the gate structure. The handling substrate and the first semiconductor layer are removed to expose a second surface of the second semiconductor layer that is opposite the first surface of the semiconductor layer. A second gate structure or a dielectric region is formed in contact with the second surface of the second semiconductor layer.
摘要:
A method of fabricating an electronic structure is provided that includes forming a first conductivity doped first semiconductor material on the SOI semiconductor layer of a substrate. The SOI semiconductor layer has a thickness of less than 10 nm. The first conductivity in-situ doped first semiconductor material is removed from a first portion of the SOI semiconductor layer, wherein a remaining portion of the first conductivity in-situ doped first semiconductor material is present on a second portion of SOI semiconductor layer. A second conductivity in-situ doped second semiconductor material is formed on the first portion of the SOI semiconductor layer, wherein a mask prohibits the second conductivity in-situ doped semiconductor material from being formed on the second portion of the SOI semiconductor layer. The dopants from the first and second conductivity in-situ doped semiconductor materials are diffused into the first semiconductor layer to form dopant regions.
摘要:
A circuit structure is disclosed which contains least one each of three different kinds of devices in a silicon layer on insulator (SOI): a planar NFET device, a planar PFET device, and a FinFET device. A trench isolation surrounds the planar NFET device and the planar PFET device penetrating through the SOI and abutting the insulator. Each of the three different kinds of devices contain a high-k gate dielectric layer and a mid-gap gate metal layer, each containing an identical high-k material and an identical mid-gap metal. Each of the three different kinds of devices have an individually optimized threshold value. A method for fabricating a circuit structure is also disclosed, which method involves defining portions in SOI respectively for three different kinds of devices: for a planar NFET device, for a planar PFET device, and for a FinFET device. The method also includes depositing in common a high-k gate dielectric layer and a mid-gap gate metal layer, and using workfunction modifying layers to individually adjust thresholds for the various kinds of devices.
摘要:
A method of fabricating an electronic structure is provided that includes forming a first conductivity doped first semiconductor material on the SOI semiconductor layer of a substrate. The SOI semiconductor layer has a thickness of less than 10 nm. The first conductivity in-situ doped first semiconductor material is removed from a first portion of the SOI semiconductor layer, wherein a remaining portion of the first conductivity in-situ doped first semiconductor material is present on a second portion of SOI semiconductor layer. A second conductivity in-situ doped second semiconductor material is formed on the first portion of the SOI semiconductor layer, wherein a mask prohibits the second conductivity in-situ doped semiconductor material from being formed on the second portion of the SOI semiconductor layer. The dopants from the first and second conductivity in-situ doped semiconductor materials are diffused into the first semiconductor layer to form dopant regions.