Abstract:
A load drive circuit is disclosed, comprising: a MOSFET 24 including a power supply terminal connected to a lamp load 1, and turned ON/OFF to supply a power supply voltage to the lamp load 1 according to a load driving control signal; a strobe circuit 22 turned ON/OFF according to a monitoring control signal of a timing for monitoring a state of a lamp switch 2; a pull-up resistor 25 connected to the strobe circuit 22; and a microcomputer 21 for driving the lamp load 1 by supplying the load driving control signal to the MOSFET 24 to control turning ON/OFF, and monitoring the state of the lamp switch 2 by supplying the monitoring control signal to the strobe circuit 22 to control turning ON/OFF, based on a voltage value by the pull-up resistor 25.
Abstract:
The radio communication apparatus of the present invention changes the transmission timing of a mobile station of the self station with respect to the transmission timing of a mobile station of a peripheral transmission station. This makes it possible to extract a received signal from the self station even if the mobile station of the self station and the mobile station of the peripheral transmission station use identical unique words.
Abstract:
A wireless communication base station device, whereby precision of propagation path estimation is improved by making possible determination of the contiguity of precoding strings contiguous in frequency regions. In this device, a pre-coding string contiguity determining portion (120) determines whether or not a plurality of pre-coding strings (?) which are input from a pre-coding string calculating portion (119) are contiguous in a frequency region. The pre-coding string contiguity determining portion (120) outputs smoothing possibility data, which indicate determination results, to a control data generating portion (104). The control data generating portion (104) generates control data indicating smoothing possibility data which is input from the pre-coding string contiguity determining portion (120).
Abstract:
A radio transmission apparatus performs communications with high transmission efficiency. In this apparatus, a modulator modulates data and outputs to a first spreader. A second modulator modulates data under a modulation scheme having a higher M-ary number than the first modulator and outputs the modulated data to a second spreader. The first spreader spreads the data and outputs the spread data to a frequency domain mapping section. The second spreader spreads the data and outputs the spread data to a time domain mapping section. A frequency domain mapping section maps chips with spread data on subcarriers in the frequency domain and outputs the data with chips mapped on subcarriers to an IFFT section. The time domain mapping section maps chips with spread data on subcarriers in the time domain and outputs the data with chips mapped on subcarriers to the IFFT section.
Abstract:
Disclosed is a wireless relay device wherein the number of stream multiplexes between a wireless transmission device and a wireless reception device can be increased without increasing the number of antennas for the wireless transmission device or the number of antennas for the wireless reception device. Specifically disclosed is a wireless relay device (100) for relaying and transmitting a signal between a wireless transmission device and a wireless reception device, which has Nrelay number (Nrelay is a natural number of 2 or more) of antenna ports, wherein a diversity reception unit (106) diversity-receives the signal which is transmitted from the wireless transmission device, and which has been modulated by the modulation multi-value number of M (where M=Nrelay 2) via the Nrelay number of antenna ports, a stream generating unit (112) divides the signal so as to generate Nrelay pieces of streams, modulation units ((114-1) to (114-Nrelay)) QPSK-modulate the Nrelay pieces of streams, and transmission RF units ((115-1) to (115-Nrelay)) transmit the N pieces of streams after modulation to the wireless reception device via the Nrelay number of antenna ports.
Abstract:
A base station apparatus is provided, which includes a generator configured to generate a synchronization signal and a transmitter configured to transmit the generated synchronization signal. The generator is configured to generate a synchronization signal to be mapped on a subcarrier included in one of a plurality of frequency resource candidates that are separated by an interval, which is a common multiple of a determined frequency spacing and a subcarrier spacing between contiguous subcarriers, wherein the subcarrier spacing does not have a value that is a divisor of the determined frequency spacing.
Abstract:
Disclosed is a radio communication device capable of improving the usage efficiency of resources in multi-stage relay to reduce the amount of delay of a relay signal and improving the reception quality of signals by a relay station or a base station. A transmission determining unit 16 determines whether to transmit the relay signal and whether to transmit ACK/NACK on the basis of whether there is an error in the relay signal, and on the basis of ACK/NACK received from a one-hop-downstream radio communication device. An MCS determining unit 17 provided in the transmission determining unit 16 determines an MCS for the relay signal. A transmission instruction generated by the transmission determining unit 16 is output to a buffer 11 and an ACK/NACK generating unit 19. The determined MCS is output to an error correction coding unit 12 and a modulation unit 13. The ACK/NACK generating unit 19 generates ACK when there is no error in the relay signal, and generates NACK when there is an error in the relay signal.
Abstract:
A transmitting apparatus and a transmitting method wherein the systematic bit reception quality can be improved and the throughput performance can be improved. An IR parameter control part (101) controls, based on the number of retransmissions, the ratio of systematic bits to parity bits in mapping them to packets, and controls to map a parity bit to an initially transmitted packet, while mapping a systematic bit to a retransmitted packet. An encoding part (102) generates the systematic bits and parity bits and maps them to the packets in accordance with the IR parameters. A transmission power calculating part (105) calculates, based on reception quality information of the initially transmitted packet fed back from a receiving end, the transmission power of the transmitted packet to which the systematic bit is mapped. A transmission power control part (106) controls the transmission power of the retransmitted packet such that it is equal to the transmission power as calculated by the transmission power calculating part (105).
Abstract:
Provided is a resource allocation method capable of improving a reception quality when connecting a plurality of sub frames into one frame and performing a communication process for each of the frames. In this method, when a sub frame #1 is transmitted, LRB is selected as a resource allocation format according to CQI fed back from a mobile station and RB having a preferable propagation quality is allocated for transmission data according to the LRB format. When a sub frame #2 is transmitted, the same resource allocation method (LRB) as the head sub frame is used and the transmission data is allocated for the same RB. When a sub frame #3 is transmitted, the resource allocation method is switched from the sub frame #1 and the sub frame #2 and the transmission data is allocated for RB by using the DRB format.
Abstract:
A radio communication apparatus includes a receiving section that receives a quality indication signal from a communicating station of a communicating party, a transmitting section that transmits transmission data corresponding to the quality indication signal to the communicating station, and a non-transmission information notifying section that notifies the communicating station of the communicating party of non-transmission information indicative of not transmitting the transmission data when the apparatus does not transmit the transmission data corresponding to the quality indication signal or the apparatus cannot transmit the transmission data to the communicating station. When the communicating terminal apparatus receives the non-transmission information indicative of not transmitting the transmission data, resources are saved in that the apparatus stops awaiting the data.