Abstract:
A digital image processing method for locating eyes and mouth in a digital face image. The method includes the steps of detecting iris colored pixels in the digital face image; grouping the iris colored pixels into clusters; detecting eye positions using the iris colored pixels; identifying salient pixels relating to a facial feature in the digital face image; generating a signature curve using the salient pixels; and using the signature curve and the eye positions to locate a mouth position. In a preferred embodiment, a summation of squared difference method is used to detect the eye positions. In another preferred embodiment, the eyes and mouth positions are validated using statistics.
Abstract:
A method for generating a stabilized three-dimensional image from a scannerless range imaging system comprises the steps of acquiring a bundle of three or more phase offset images corresponding to modulated illumination reflected from a scene, whereby one or more of the phase offset images includes image motion relative to another phase offset image; searching for a stable chain of phase offset images in the image bundle, wherein a stable chain is a collection of images that is obtained by testing the phase offset images against a confidence measure that separates less severe correctable image motion from more severe image motion and then populating the stable chain only with those phase offset images that meet the confidence measure for correctable image motion; correcting for the image motion in the stable chain of images if a stable chain of at least three phase offset images is found to exist; and computing a stabilized three-dimensional image using the phase offset images from the stable chain of phase offset images.
Abstract:
A digital image processing method is taught for detecting human irises in a digital image. The method comprises the steps measuring the red intensity of the pixels in the image, determining the probability that each pixel is an iris based upon the red intensity of the pixel, determining the probability that each pixel is not an iris based upon the red intensity of the pixel; and determining whether the pixel is an iris by analyzing the relationship between the probability that the pixel is an iris and the probability that the pixel is not an iris. In one embodiment of the present invention, the determination as to whether a pixel is an iris pixel is then made based upon the application of a Bayes model to the probability that the pixel is not an iris, the probability of the occurrence of an iris in the identified region and probability of the occurrence of a non-iris pixel in the identified region. In another embodiment of the present invention, the method comprises the steps of finding an oval shaped skin color region, detecting iris color pixels in the oval shaped skin color region, detecting iris color pixels in the oval shaped region using a Bayes model and locating eye positions based upon the detected iris color pixels.A computer program product for performing these methods is also taught.
Abstract:
Intermediate panoramic images are each generated from two original panoramic images, where each panoramic image provides a 360 degree field of view of a scene from different nodal points. First, pairs of planar images are derived, where each pair corresponds to original planar views derived from respective portions of the original panoramic images, where a similar area of the scene is visible from each pair of planar views. Then, an intermediate planar image is generated from each pair of planar images, and the resulting series of intermediate planar images are cylindrically concatenated to form the intermediate panoramic image.
Abstract:
The present invention comprises a digital image processing method for detecting human eyes in a digital image. This method comprises the steps of: detecting iris pixels in the image; clustering the iris pixels, and selecting at least one of the following methods to identify eye positions: applying geometric reasoning to detect eye positions using the iris pixel clusters; applying a summation of squared difference method using the iris pixel clusters to detect eye positions; and applying a summation of squared difference method to detect eye positions from the pixels in the image. The method applied is selected on the basis of the number of iris pixel clusters. In another embodiment, the present invention also comprises a computer program product.
Abstract:
A color scannerless range imaging system includes an illumination system for controllably illuminating a scene with modulated illumination and an image responsive element for capturing image light from the scene, including the modulated image light. The system establishes a primary optical path for directly image light toward the image responsive element. A beamsplitter located in the primary optical path separates the image light into two channels, a first channel including an infrared component and a second channel including a color texture component, whereby one of the channels traverses a secondary optical path distinct from the primary path. A modulating element is operative in the first channel to receive the infrared component and a modulating signal, and to generate a processed infrared component with phase data indicative of range information. An optical network is provided in the secondary optical path for recombining the secondary optical path into the primary optical path such that the processed infrared component and the color texture component are directly to the image responsive element.
Abstract:
A method of unambiguous range estimation is provided for use with a range imaging system that derives phase images from image pixels of a digital image. The method involves generating (a) a first phase image having one or more ambiguous phase intervals and (b) at least one additional phase image that is generated by shifting the phase intervals of the first phase image. Then at least one region of intersection between phase intervals in the two phase images is identified. Finally, the phase of at least one of the ambiguous phase intervals in the first phase image is adjusted based on values of the phase of the image pixels that belong to the region of intersection. As a result, the phase adjustment unwraps the phase ambiguity in the phase intervals of the first phase image.
Abstract:
A method and apparatus in which a geometric graphic image of an object to be rendered as a depth image is created. The viewpoint of the viewer of the depth image is determined by the user. Once the viewpoint is determined the number of views is automatically determined along with the spacing between or positions of the views. The system adjusts the aspect ratio of each view and rotates the object prior to rendering. The rendered views are then stored as electronic interleaved images which are used to produce a depth image, such as a lenticular print.
Abstract:
A system and method that generates computer graphic images using anti-aliasing rendering to create sets of offset images each of a lower resolution than the resolution desired. The anti-aliasing rendering is performed using offset weights that effectively cause a graphic model to be rendered at different rendering points for each low resolution image which are offset between low resolution images. The lower resolution offset images are then interlaced or combined to produce the desired high resolution image.
Abstract:
Multiple validations of printed documents incorporating image information and authorizing data on a printed document assist in the printed document validation process. This technique requires the authorized document holder to have an image identification accompany the application or production of the document. Image information is converted to a storable image that is used in one of a plurality of validating schemes that assures that the presenter of the printed document is not a substitute. Such schemes included visual comparison of the printed document presenter and extracted image information and validation that the data has not been altered. Non-reversible encryption of the data, as it is read from the document at the document presentation site is used to formulate encoded authorization data that is then compared against like encoded authorized document holder data stored at a centrally located data base.