摘要:
A terminal apparatus and a response signal transmitting method wherein the system transmission efficiency can be improved by devising a bundling rule. In a terminal (200), a PDSCH receiving unit (208) receives first and second code words, which comprise code word block (CWB) groups to be mapped to the respective ones of a plurality of downstream unit bands, and detects errors of the CWBs; and an A/N bundling unit (216) transmits, based on a bundling rule in which each CWB is associated with any one of first and second bundling groups, a single bundle of response signals into which the error detection results are bundled for each bundling group. According to the bundling rule, at least one of the first and second bundling groups includes both the CWB belonging to the first code words and the CWB belonging to the second code words.
摘要:
A terminal apparatus is disclosed wherein even in a case of applying SU-MIMO and MU-MIMO at the same time, the inter-sequence interference in a plurality of pilot signals used by the same terminal can be suppressed to a low value, while the inter-sequence interference in pilot signal between terminals can be reduced. In this terminal apparatus (200): a pilot information deciding unit (204) decides, based on allocation control information, Walsh sequences of the respective ones of first and second stream groups at least one of which includes a plurality of streams; and a pilot signal generating unit (205) forms a transport signal by using the decided Walsh sequences to spread the streams included in the first and second stream groups. During this, Walsh sequences orthogonal to each other are established in the first and second stream groups, and users are allocated on a stream group-by-stream group basis.
摘要:
There is provided a base station device for suppressing increase of current consumption at a communication terminal by a line quality information report used for resource allocation of a downstream line and increase of interference of the upstream line traffic. The base station device reports whether a terminal performing communication which may be delayed, to each communication terminal (ST301). When the communication terminal has received a report that it is a terminal performing communication whose delay is not permitted, it reports the line quality information all the report timings (ST302, ST307, ST310). On the other hand, when the terminal is decided to be a terminal performing communication which may be delayed, it reports line quality information on an preferable average line quality sub-carrier group once a predetermined report timing (ST303).
摘要:
To measure the channel quality of the own cell accurately in a condition where there is no interference from a neighbor cell. A wireless communication terminal according to the invention is a wireless communication terminal to be connected to a base station for transmitting and receiving data to/from the base station, the wireless communication terminal including: a receiver that receives a signal which includes control information provided for measuring a channel quality of own cell from the base station; an extractor that extracts the control information from the signal received by the receiver; a measurement section that measures, on the basis of the control information, the channel quality of the own cell in a domain where a neighbor cell does not transmit a signal; and a transmitter that transmits a measurement result of the channel quality of the own cell measured by the measurement section, to the base station.
摘要:
A base station able to maintain backward compatibility with an LTE mobile station while minimizing the amount of increase in uplink scheduling information reception and demodulation/decoding processing in independent uplink/downlink cell data transmission. A wireless communication system includes a cell #1, a cell #2, and an LTE-A mobile station, and supports independent uplink/downlink cell data transmission. The base station of the cell #2 arranges a PDCCH+, which includes uplink scheduling information from the LTE-A mobile station to the base station of the cell #2, in a downlink data region in the downlink connection of the base station of the cell #1.
摘要:
A radio communication system, scheduling method, radio base station device, and radio communication terminal all enabling improvement of the system throughput. The radio base station device (400) comprises a signal demultiplexing section (420), an interference/noise power measuring section (425), and scheduler section (430). The signal demultiplexing section (420) acquires information representing the net reception power of the signal which is transmitted from a mobile terminal and from which the influences of the interference and the noise power are removed. The interference/noise power measuring section (425) measures the interference and noise power components of the uplink. The scheduler section (430) carries out uplink band allocation and MCS selection according to the information representing the net reception power and the uplink interference and noise power components. On the basis of the net reception power and the uplink interference and noise power components, the uplink communication environment can be accurately grasped, and the uplink band allocation can be carried out according to these parameters. Hence, since the uplink scheduling can be precisely carried out, the system throughput can be improved.
摘要:
Provided is a radio communication device which can separate propagation paths of antenna ports and improve a channel estimation accuracy even when using virtual antennas. The device includes: a mapping unit (103) which maps a data signal after modulation to a virtual antenna (0) and a virtual antenna (1); a phase inversion unit (104) which inverts the phase of S0 transmitted from an antenna port (2) in synchronization with a phase inversion unit (105) between the odd-number slot and the even-number slot; the phase inversion unit (105) which inverts the phase of R0 transmitted from the antenna port (2); a phase inversion unit (113) which inverts the phase of S1 transmitted from an antenna port (3) in synchronization with a phase inversion unit (114); and the phase inversion unit (114) which inverts the phase of R1 transmitted from an antenna port (3).
摘要:
Disclosed are a control signal transmitting method and mobile terminal device capable of switching between a plurality of terminal communication modes having different maximum transmissible power values with a high degree of precision, while suppressing increases in signaling overhead. In a mobile station (100), a PHR transmission evaluating unit (115) sends, to a base station (200), power head room (PHR) information for the SC-FDMA mode or the OFDMA mode during a reporting period, and a maximum transmission power information setting unit (101) provides notification to the base station (200) of difference information between the transmission modes prior to the beginning of the reporting period. An increase in signaling overhead can be prevented because only a single set of PHR information among the information for the plurality of terminal transmission modes is reported in this way. Providing notification of difference information between the transmission modes enables the base station (200) to calculate the PHR of each of the terminal transmission modes without receiving PHR information for all of the terminal transmission modes. This therefore enables highly accurate switching among the terminal transmission modes with appropriate timing.
摘要:
A mobile communication system which is capable of, when carrying out mobile communication using a shared channel, increasing in efficiency of transmission timing of the data transmission rate request value to prevent wasteful power consumption and hence reduce power consumption. A mobile station apparatus of the mobile communication system measures CIR of the received signal from a base station apparatus at a CIR measuring section, and decides the data transmission rate request value corresponding to the measured CIR value at a rate request value deciding section. Also, it detects an error of the received signal at a CRC section, and, when no error is found, calculates a difference between the average data transmission rate from a base station apparatus and the data transmission request value at a rate request value transmission controlling section. Then, it transmits the data transmission rate request value to the base station apparatus only when the obtained difference is larger than a threshold value.
摘要:
Disclosed are a radio communication base station device, a radio communication terminal device, and a radio communication method which can reduce interference between adjacent resource blocks even when the DL timing is overlapped with the UL timing at the boundary between an independent allocation band and a cooperation allocation band. When a terminal A is allocated for a UL resource block of the cooperation allocation band serving as a band boundary with the independent allocation band, in ST301, a terminal A transmits a horizontally polarized wave signal to respective terminals B to D, and in ST302, a base station (100) transmits a vertically polarized signal to respective terminals A to D. In ST303, the terminals B to D measure XPD of the received vertically polarized signal and the horizontally polarized signal. In ST304, the terminals B to D transmit the XPD report value to the base station (100). ST305 selects the terminal which has transmitted the largest XPD report value among the XPD report values transmitted from the terminals B to D and allocates the selected terminal to the DL resource block at the band boundary.