Abstract:
A method of startup from a resting state for a ropeless elevator system and a ropeless elevator system are disclosed. The ropeless elevator system may include a hoistway. The method for startup may include applying a thrust force on the brake, the thrust force generated by a propulsion system, detecting the thrust force on the brake, determining if the thrust force on the brake is greater than or equal to a requisite thrust force for startup, and disengaging the brake if the thrust force on the brake is greater than or equal to the requisite thrust force.
Abstract:
A guidance mechanism for an elevator car is constructed and arranged to move along a lane defined at least in-part between two opposing first and second lane structures of a stationary structure. The guidance mechanism includes a first support structure supported by the first lane structure. The first support structure includes a first retainer face disposed between the elevator car and the first lane structure that substantially faces the first lane structure, and is spaced from the first lane structure. A first retention device of the mechanism is disposed, at least in part, between the first retainer face and the first lane structure. The first retention device is supported by the elevator car and is constructed and arranged to contact the first retainer face for limiting lateral movement of the elevator car away from the first lane structure and toward the second lane structure.
Abstract:
A ropeless elevator system, a propulsion system, and a method for operating a ropeless propulsion system are disclosed. The ropeless elevator system may include an elevator car, a hoistway in which the elevator car travels, and a ropeless propulsion system. The ropeless propulsion system may include electrical windings energized by a power source, the electrical windings affixed to a stationary structure, the stationary structure associated with the hoistway, and a magnet, the magnet affixed to a moving structure, the moving structure associated with the elevator car, and interaction between the electrical windings and the magnet generates a thrust force on the elevator car traveling in the hoistway. The ropeless elevator system may further include an array of Hall effect sensors, the array of Hall effect sensors determining a sensed magnetic field, the sensed magnetic field being associated with electrical currents carried by the windings and used to determine a magnetic field orientation of the electrical currents carried by the windings with respect to the magnet.
Abstract:
A load bearing member for supporting an elevator car has a plurality of tension members that bear the weight of the elevator car. The plurality of tension members extends along a length. An outer cover at least partially covers the plurality of tension members and has a first surface and a second surface.
Abstract:
A propulsion system includes a magnetic screw having a first magnetic element having a first polarity, the first magnetic element arranged along a first non-linear path along a longitudinal axis of the magnetic screw and a second magnetic element having a second polarity, the second magnetic element arranged along a second non-linear path along the longitudinal axis of the magnetic screw; a motor for rotating the magnetic screw about the longitudinal axis; and a stator made from a ferrous material, the stator having a body with an internal cavity, the body including a plurality of poles extending into the cavity, the poles arranged along a pole non-linear path along a longitudinal axis of the stator.
Abstract:
An elevator system includes an elevator car; a guide rail; and a linear synchronous reluctance motor including: a primary circuit having a plurality of primary poles and windings about the primary poles; a secondary circuit having a plurality of secondary poles; the primary circuit coupled to one of the elevator car and the guide rail, the secondary circuit coupled to the other of the elevator car and the guide rail.
Abstract:
An adjacent safety configuration for an elevator includes a second pair of safeties displaced from a first pair of safeties by at least 0.1 seconds of travel time at a rated speed of the elevator. An adjacent safety configuration for an elevator including a second pair of safeties displaced from the first pair of safeties to provide a predetermined time period before the second pair of safeties pass over a point on a guide rail previously passed over by the first pair of safeties to permit the guide rail surface to decrease by a predetermined temperature. A method of spacing an adjacent safety configuration for an elevator system including de-rating a pair of trailing safeties with respect to a pair of leading safeties as a function of a rated speed of the elevator and a spacing between the pair of trailing safeties and the pair of leading safeties.
Abstract:
A suspension member for suspending and/or driving an elevator car of an elevator system includes a plurality of tension members extending along a length of the suspension member including a plurality of fibers extending along the length of the suspension member bonded into a polymer matrix. A jacket substantially retains the plurality of tension members. The suspension member is configured to be deformed at a suspension member end to allow for installation of the suspension member end into a termination assembly of the elevator system. A method of installing a suspension member of an elevator system into a termination assembly includes deforming a suspension member end and reforming it to a selected shape, inserting the suspension member end into the termination assembly and curing and/or hardening it, and applying a load thereto or to the socket or the wedge to secure the suspension member end in the termination assembly.
Abstract:
A guidance mechanism for an elevator car is constructed and arranged to move along a lane defined at least in-part between two opposing first and second lane structures of a stationary structure. The guidance mechanism includes a first support structure supported by the first lane structure. The first support structure includes a first retainer face disposed between the elevator car and the first lane structure that substantially faces the first lane structure, and is spaced from the first lane structure. A first retention device of the mechanism is disposed, at least in part, between the first retainer face and the first lane structure. The first retention device is supported by the elevator car and is constructed and arranged to contact the first retainer face for limiting lateral movement of the elevator car away from the first lane structure and toward the second lane structure.
Abstract:
An illustrative example elevator brake device includes a housing that supports a brake member. The brake member has a braking surface. The brake member is moveable between a disengaged position and an engaged position. A plurality of buckling beams are situated to urge the brake member to apply a braking force.