Abstract:
Provided are a user equipment (UE), an eNode B (eNB) and a wireless communication method for Licensed-Assisted Access (LAA). A UE for LAA according to one embodiment can comprise: a first circuit operative to perform a first listen-before-talk (LBT) in a system bandwidth; a second circuit operative to perform a second LBT in an allocated bandwidth; and a transmitter operative to transmit a signal in the allocated bandwidth if the first LBT is unsuccessful and the second LBT is successful.
Abstract:
Provided are a base station, user equipment and wireless communication method related to RS collision cancellation in full duplex communication. A base station comprises: circuitry operative to perform at least one of a first processing and a second processing on downlink signals to be transmitted on a physical resource unit in a full duplex mode corresponding to one Transmission Time Interval (TTI); a transmitter operative to transmit the processed downlink signals on the physical resource unit to a first user NO equipment in a TTI; and a receiver operative to receive uplink signals on the physical resource unit from a second user equipment, wherein the first processing is use to be performed such that Code Division Multiplexing (CDM) is applied between the downlink signal and the uplink signal assigned on each of at least part of collided resource elements in the physical resource unit, each of the collided resource elements being assigned with both a downlink signal and an uplink signal at least one of which is a reference signal, and the second processing comprises suppressing at least part of the downlink signals assigned on the resource elements assigned with uplink reference signals thereon in the collided resource elements.
Abstract:
Provided are an eNB, a UE and wireless communication methods. A UE according to an embodiment of the present disclosure can comprise circuitry operative to determine valid transmission time interval (s) (TTI (s)) for a physical channel in a subframe based on the resource element (RE) number of each TTI in the subframe; and a receiver operative to receive the physical channel in one or more of the valid TTI (s) by blindly decoding part or all of the valid TTI (s), wherein each TTI comprises 1-7 orthogonal frequency division multiplexing (OFDM) symbols.
Abstract:
Provided are a user equipment (UE), an eNode B (eNB) and a wireless communication method for Licensed-Assisted Access (LAA). A UE for LAA according to one embodiment can comprise: a first circuit operative to perform a first listen-before-talk (LBT) in a system bandwidth; a second circuit operative to perform a second LBT in an allocated bandwidth; and a transmitter operative to transmit a signal in the allocated bandwidth if the first LBT is unsuccessful and the second LBT is successful.
Abstract:
The present disclosure relates to a method for transmitting and receiving a beamformed data transmission transmitted from a radio base station to a user equipment over an unlicensed band. The data transmission is transmitted by the radio base station within one or more resource blocks of a subframe, each resource block being composed of a plurality of resource elements. The beamformed data transmission is generated by the radio base station by 1) applying a first precoding for generating a beam directionality towards the user equipment to a subset of all the resource elements used for transmitting the data transmission in the subframe, and 2) applying a second precoding, different from the first precoding, to the remaining resource elements used for transmitting the data transmission in the subframe so as to achieve a radiation pattern different from the beam directionality towards the user equipment.
Abstract:
Provided are wireless communication methods, an eNB and a UE. A wireless communication method performed by the eNB includes transmitting repetitions of control channel(s) in a control region to a first UE in a coverage enhancement level, wherein the control region includes multiple sub-regions each of which can be used to transmit repetitions of one control channel; possible sub-region(s) allocated from the multiple sub-regions for transmitting one control channel to the first UE in the coverage enhancement level start from the same subframe; and the possible sub-region(s) for the first UE in the specific coverage enhancement level constitute a subset of a set of available sub-regions for the coverage enhancement level in the eNB's perspective.
Abstract:
Provided are wireless communication methods, a UE and an eNB. The wireless communication method performed by a UE includes transmitting transport block repetitions to an eNB, wherein one HARQ process includes multiple repetition sets of a transport block if one repetition set of the transport block is not enough for the eNB to successfully decode the transport block, each of the multiple repetition sets includes multiple repetitions of the transport block, each of the multiple repetition sets is followed by a feedback channel to indicate whether the transport block is successfully decoded by the eNB.
Abstract:
A base station selects, from among a plurality of code sequences orthogonal to one another, one code sequence by which an uplink signal including a demodulation reference signal repeated in a plurality of subframes is multiplied and transmits, to a terminal for which transmission of the repeated uplink signal is configured, information indicating the selected code sequence by using a field for indicating a cyclic shift and an orthogonal sequence used for the demodulation reference signal. A terminal receives information indicating one of a plurality of code sequences orthogonal to one another using a field for indicating a cyclic shift and an orthogonal sequence used for a demodulation reference signal and multiplies an uplink signal including the demodulation reference signal repeated in a plurality of subframes by the code sequence indicated by the information.
Abstract:
The present disclosure provides a band usage information generating and reporting method, a charging method, an eNB, a CN, a MME and a UE. The eNB and the UE can generate band usage information for charging, and report the band usage information to the CN, wherein the band usage information involves band usage of at least a first band and a second band, and traffic is assigned to respective bands by the eNB. The Counting entity at the eNB or UE can count the data volume of each band or ratio of data volume via different bands as the band usage information based on the scheduling information of the data. The Charging system located in the CN can process the charging and generate a bill according to the reported band usage information.
Abstract:
Provided are D2D communication methods, a D2D-enabled device and an eNB. A D2D communication method performed by a D2D-enabled device comprises: reporting, through a media access control (MAC) signaling or a radio resource control (RRC) signaling to an eNode B (eNB) that allocates resource for a D2D transmission, a modulation and coding scheme (MCS) or a resource size to be used by the D2D-enabled device in the D2D transmission, wherein the MCS or the resource size is for a D2D data channel, a D2D control channel and/or a D2D discovery channel.