摘要:
A downhole refractometer apparatus and method include a light source, an optical fiber that receives light emitted from the light source and a fluid cell that receives a downhole fluid. A metalloid interface member is disposed to provide an interface with the downhole fluid in the fluid cell, and a light detecting device detects a light reaction at the metalloid interface member, the downhole fluid property being estimable at least in part based on the light reaction.
摘要:
The present invention provides an apparatus and method for high resolution spectroscopy using a narrow light beam source such as a superluminescent diode (SLD) and a tunable optical filter (TOF) for analyzing a formation fluid sample downhole and at the surface to determine formation fluid parameters. The SLD and TOF have a matching etendue. The analysis comprises determination of gas oil ratio, API gravity and various other fluid parameters which can be estimated after developing correlations to a training set of samples using a neural network or a chemometric equation.
摘要:
An apparatus is disclosed for controlling heat flow in a downhole tool using a thermal rectifier material. The thermal rectifier material is positioned between a heat source and a heat sink for reducing flow of heat returning from the heat sink to the heat source. That is, the thermal rectifier conceptually operates as a “thermal check valve” so that heat, which has flowed (or been pumped) out of a region, has difficulty returning to that region. Another embodiment of an apparatus is disclosed for controlling heat flow in a downhole tool, which includes a thermal rectifier material surrounding a liquid supply, wherein the thermal rectifier material allows more heat to flow through the thermal rectifier in a first direction away from the liquid supply than in a direction through the thermal rectifier material toward from the liquid supply. A method for controlling heat flow in a downhole tool using a thermal rectifier material is also disclosed.
摘要:
Techniques for evaluating physical aspects of a formation fluid from within a wellbore include changing at least one of a pressure on and a temperature of a sample of the formation fluid and transmitting at least one acoustic pulse through the fluid sample and analyzing acoustic information collected. Apparatus and methods for the evaluating involve using at least one acoustic transducer. Analyzing typically involves use of formulae that relate equation (s) of state and other properties for the fluid to a change in the sound speed in the fluid.
摘要:
In one embodiment an apparatus is disclosed that includes a tool in a wellbore. A probe is extendable from the tool to contact a wall of a formation surrounding the wellbore. A tube substantially surrounds the probe wherein the tube is extendable into the formation surrounding the wellbore. In another embodiment a method for reducing contamination of a sample of a formation fluid is disclosed that includes extending a probe to contact a wall of a formation. A barrier tube that substantially surrounds the probe is extended into the formation thereby restricting a flow of a contaminated reservoir fluid that would otherwise come from near-wellbore regions above and below the probe from going toward the probe.
摘要:
The present invention provides method and apparatus for quantifying sample clean up in real time by providing curve-fitting measurements of optical or other physical properties of fluid downhole. Fluid is extracted from the formation surrounding a borehole. As fluid continues to be extracted the composition of the extracted fluid changes, altering the measured values of optical and physical properties of the fluid. Measurements are made of optical or physical properties of the sampled fluid, analysis is performed on the acquired measured data points.
摘要:
A formation fluid sample is exposed to a rigidly-supported semi-permeable membrane such as silicone rubber to permit diffusion of gases and vapors from the formation fluid into a vacuum chamber, while at the same time, blocking the passage of any liquids. The membrane-transmitted gas is analyzed in the vacuum chamber by a sorbent-coated resonator. The sorbent absorbs gas and changes the resonant frequency of the resonator to indicate the presence of a gas. An ion pump or sorbent is associated with the evacuated chamber to maintain the vacuum. The ion pump or sorbent removes gases and vapors from the chamber that diffuse into the chamber from the reservoir sample that is on the opposite side of the semi-permeable membrane.
摘要:
In a particular embodiment, a method is disclosed for determining a source of a fluid downhole. The method includes deploying an ion selective sensor downhole, exposing the fluid to the ion selective sensor downhole, measuring an ion concentration at different places within the fluid and using that information to identify a source of the fluid from the ion concentration profile. In another particular embodiment, an apparatus is disclosed for estimating a source of a fluid. The apparatus contains a tool deployed in a well bore, an ion selective sensor in the tool, a processor in communication with the ion selective sensor and a memory for storing an output from the ion selective sensor.
摘要:
The disclosure, in one aspect, provides a method for estimating a property of a fluid that includes: pumping an ultraviolet (UV) light into a fluid withdrawn from a formation downhole at a wavelength that produces light due to the Raman effect at wavelengths that are shorter than the substantial wavelengths of fluorescent light produced from the fluid; detecting a spectrum corresponding to the Raman effect light (“Raman spectrum”); and processing the detected Raman spectrum at one or more selected wavelengths to estimate a property of the fluid. In another aspect, the disclosure provides an apparatus that includes a laser that induces UV light at a selected wavelength into a fluid in a chamber, a detector that detects Raman scattered light at wavelengths shorter than the wavelengths of the fluorescent light scattered by the fluid, and a processor that analyzes a spectrum corresponding the Raman scattered light at a selected wavelength to estimate a property of the fluid.
摘要:
The present invention provides an down hole apparatus and method for ultrahigh resolution spectroscopy using a tunable diode laser (TDL) for analyzing a formation fluid sample downhole or at the surface to determine formation fluid parameters. In addition to absorption spectroscopy, the present invention can perform Raman spectroscopy on the fluid, by sweeping the wavelength of the TDL and detecting the Raman-scattered light using a narrow-band detector at a fixed wavelength. The spectrometer analyzes a pressurized well bore fluid sample that is collected downhole. The analysis is performed either downhole or at the surface onsite. Near infrared, mid-infrared and visible light analysis is also performed on the sample to provide an onsite surface or downhole analysis of sample properties and contamination level. The onsite and downhole analysis comprises determination of aromatics, olefins, saturates, gas oil ratio, API gravity and various other parameters which can be estimated by correlation, a trained neural network or a chemometric equation.