SECONDARY BATTERY, MANUFACTURING METHOD OF SECONDARY BATTERY, ELECTRONIC DEVICE, AND VEHICLE

    公开(公告)号:US20230343952A1

    公开(公告)日:2023-10-26

    申请号:US18002197

    申请日:2021-06-15

    Abstract: A positive electrode active material with high charge and discharge capacity is provided. A positive electrode active material with high charge and discharge voltage is provided. A positive electrode active material that hardly deteriorates is provided. The positive electrode active material is formed through a plurality of heating steps. The second and subsequent heating steps are preferably performed at a temperature higher than or equal to 742° C. and lower than or equal to 920° C. for longer than or equal to an hour and shorter than or equal to 10 hours. Through the heating, magnesium, fluorine, and the like are distributed in a surface portion of the positive electrode active material with preferable concentrations. The crystal structure of general lithium cobalt oxide is easily broken because it becomes the H1-3 phase type crystal structure when being charged at 4.6 V; on the other hand, the positive electrode active material of the present invention has a small ratio of the H1-3 type crystal structure when being charged at 4.6 V, and has the O3′ type crystal structure where a change in the crystal structure from discharging is relatively small, and thus has excellent cycle performance.

    MANUFACTURING METHOD OF POSITIVE ELECTRODE ACTIVE MATERIAL

    公开(公告)号:US20230286825A1

    公开(公告)日:2023-09-14

    申请号:US18040286

    申请日:2021-08-06

    CPC classification number: C01G53/44 C01P2006/40

    Abstract: A manufacturing method of a highly purified positive electrode active material is provided. Alternatively, a manufacturing method of a positive electrode active material whose crystal structure is not easily broken even when charging and discharging are repeated is provided. Provided is a manufacturing method of a positive electrode active material containing lithium and a transition metal. The manufacturing method includes a first step of forming a hydroxide containing the transition metal using a basic aqueous solution and an aqueous solution containing the transition metal, a second step of preparing a lithium compound, a third step of mixing the lithium compound and the hydroxide to form a mixture, and a fourth step of heating the mixture to form a composite oxide containing lithium and the transition metal. A material with a purity higher than or equal to 99.99% is prepared as the lithium compound in the second step, and the heating is performed in an oxygen-containing atmosphere with a dew point lower than or equal to −50° C. in the fourth step.

    SECONDARY BATTERY, PORTABLE INFORMATION TERMINAL, VEHICLE, AND MANUFACTURING METHOD OF POSITIVE ELECTRODE ACTIVE MATERIAL

    公开(公告)号:US20230055667A1

    公开(公告)日:2023-02-23

    申请号:US17793194

    申请日:2021-01-21

    Abstract: A positive electrode active material with little deterioration is provided. Positive electrode active material particles with little deterioration are provided. A power storage device with little deterioration is provided. A highly safe power storage device is provided. A novel power storage device is provided. A secondary battery includes a positive electrode and a negative electrode. In the secondary battery, the positive electrode includes a positive electrode active material; the positive electrode active material includes a crystal exhibiting a layered rock-salt crystal structure; the crystal is represented by the space group R-3m; the positive electrode active material is a particle containing lithium, cobalt, titanium, magnesium, and oxygen; the concentration of the magnesium in a surface portion of the particle is higher than the concentration of the magnesium in an inner portion of the particle; and in the positive electrode active material, the concentration of the titanium in the surface portion of the particle is higher than the concentration of the titanium in the inner portion of the particle.

Patent Agency Ranking