Abstract:
The present invention provides a liquid crystal panel common electrode voltage adjustment device and a liquid crystal panel common electrode voltage adjustment method. The liquid crystal panel common electrode voltage adjustment device includes a detection unit, a data collection unit, a process unit and an adjustment unit, and the detection unit detects a flicker condition of the liquid crystal panel in an activation state, and the data collection unit collects a common voltage value as the flicker exceeds a predetermined range to obtain a first common voltage, and the process unit obtains a control signal according to the first common voltage, and the adjustment unit sends a corresponding adjustment signal, and the adjustment signal adjusts the common voltage to be a second common voltage, and as the second common voltage is applied to the liquid crystal panel, the flicker of the liquid crystal panel is controlled in the predetermined range.
Abstract:
A liquid crystal panel including a plurality of pixel units, each including sub-pixel units of a plurality of colors, the sub-pixel units included in the liquid crystal panel includes a main pixel area and a secondary pixel area. The driving method includes: acquiring a grayscale value of a picture to be displayed of each of the partial sub-pixel units; searching for a main grayscale value and a secondary grayscale value corresponding to the grayscale value of the picture to be displayed of the each of the partial sub-pixel units from a corresponding relationship between grayscale values of a color of each of the partial sub-pixel units and the main grayscale values and the secondary grayscale values; and providing the searched main grayscale value and the secondary grayscale value to areas of the main pixel unit and the secondary pixel unit of the each of the partial sub-pixel units respectively.
Abstract:
A color gamut mapping method based on a color gamut of a source image is disclosed. The method comprises: (a) inputting a source image, measuring a grayscale value of each of color sub-pixels corresponding to each pixel point; (b) determining multiple preset target pixel points on the source image based on the grayscale value of each of the color sub-pixels; (c) calculating multiple coordinate values in an uniform chromaticity space corresponding to each of the multiple preset target pixel points; (d) determining a color gamut of the source image based on the multiple coordinate values; (e) extracting a color gamut boundary of a target device to obtain a color gamut; and (f) performing a color gamut mapping between the source image and the target device. In a transfer and reproduce process of image colors, the loss is reduced, gamut mapping effect is better, and effectively reduce the amount of calculation.
Abstract:
The invention provides an online real-time control method for a product manufacturing process and includes: (A) establishing a monitoring equation for estimating a product attribute in view of production line parameters corresponding to respective steps in a manufacturing process of a product; (B) when each of the steps is finished, updating the calculation result according to an online feedback value(s) of the production line parameter(s) corresponding to the finished step; (C) when the updated calculation result in the step (B) indicates that the quality of the product does not meet a required quality specification, adjusting the production line parameter(s) corresponding to the step(s) after the finished step to make the quality of the product meet the required quality specification. According to the method, a key attribute(s) of the display device can be kept within an acceptable specification by adjusting the production line parameter(s) of subsequent step(s).
Abstract:
Disclosed is a pixel unit setting method for a liquid crystal panel. The liquid crystal panel includes a plurality of pixel units, each of which includes at least a blue sub pixel. The method includes dividing the blue sub pixel into a main pixel zone and a sub pixel zone with the area ratio therebetween being a:b; acquiring actual brightness levels of the blue sub pixel for each grey level at a normal view angle and an oblique view angle; setting a combination of grey levels to be fed to the main and sub pixel zones of one pixel unit so as to have the sum of differences between the actual and theoretical brightness levels at the normal and oblique view angles minimized so as to obtain the grey levels to be fed to the main and sub pixel zones for all the grey levels of the pixel unit.
Abstract:
A RGB-to-RGBW color converting system includes: a linearization section for linearizing inputted RGB values; a comparing section for comparing the linearized RGB values to obtain maximum and minimum values; a binarization section for performing a brightness binarization on the linearized RGB values to obtain a brightness binarization value; a gain value determining section for comparing a percentage of number of pixels corresponding to the brightness binarization value to all number of pixels in an image with a preset percentage to obtain a gain value; an output value calculating section for calculating RGBW output values according to the linearized RGB values, the maximum value, the minimum value, the gain value and the preset percentage. Accordingly, the addition of W sub-pixel unit would not result in the decrease of RGB output values, so that the color saturation can be improved while the whole brightness of image is maintained.
Abstract:
A method of setting a grayscale value of a liquid crystal panel, each pixel unit in the liquid crystal panel comprises a main pixel M and a sub pixel S, having an area ratio between the main and sub pixels. The method includes acquiring an actual brightness value of each grayscale of the liquid crystal panel under a front view and a squint angle; dividing the actual brightness values based on the area ratio, and establishing a relationship between the grayscale and the actual brightness; calculating a theoretical brightness value of each grayscale; setting a grayscale combination input to the main pixel M and the sub pixel S, so a sum of difference values between actual and theoretical brightness would be the smallest under the front and squint angles; repeating the previous step for all grayscales of the liquid crystal panel. A liquid crystal display is also disclosed.
Abstract:
An on-line actual-time monitoring method performed on manufacturing procedures for a display provided comprises: (A) production-lined parameters correspond to and base on respectively every process in manufacturing procedures of a display to establish a monitoring equation of estimating display attributes, wherein, calculating results of the monitoring equation is used to indicate display qualities; (B) when accomplishing a process of the display, the calculating results of the monitoring equation is updated based on an on-line feedback and the production-lined parameters corresponding to the process; (C) when the display qualities indicated from the updated calculating results in the step (B) are inappropriate for quality standards, production-lined parameters corresponding to a process after the previous process is performing an adjustment to make the display qualities appropriate for the quality standards. According to the aforementioned method, key attributes of displays can be kept within appropriate standards by production-lined parameters of post-adjusted process and then further increase display product productivity which is appropriate standards.
Abstract:
A Gamma voltage generating module for supplying a liquid crystal panel having a plurality of pixel units, each including comprising a main pixel region M and a sub pixel region S. The Gamma voltage generating modules have a reference voltage unit source to a first divider resistance string for dividing the reference voltages to form Gamma voltages corresponding to 0-255 gray scales, and supplying the Gamma voltages to the main pixel region M; and a second divider resistance string, coupled to the reference voltage unit, for forming Gamma voltages corresponding to 0-255 gray scales, and supplying the Gamma voltages to the sub pixel region S. The first divider resistance string and the second divider resistance string, the Gamma voltage generating points at least at gray scales of 0, Gx, Gx+1 and 255 connect with the reference voltages. Also discloses a liquid crystal panel comprising the above Gamma voltage generating module.
Abstract:
A polarizing plate is laminated onto a surface of a substrate, for converting the light passing through the substrate into a polarized light. The polarizing plate includes a polarizing layer provided with a laminating adhesive on a side of the polarizing layer, being laminated to the substrate by the laminating adhesive. A removable adhesive is disposed on a side of the polarizing layer opposite to the laminating adhesive, and is removable by an adjustment of an environmental temperature for lamination. A protective layer is laminated to the polarizing layer through the removable adhesive so as to support and protect the polarizing layer.