Abstract:
[Object] To allow an increase in load on the base station to be suppressed when the device-to-device communication is performed.[Solution] There is provided a terminal apparatus capable of communicating with a base station, the terminal apparatus including an acquisition unit that acquires radio resource information related to a radio resource usable for device-to-device communication not via the base station, of radio resources controllable by the base station, and a determination unit that determines a size of data to be transmitted and received in the device-to-device communication on the basis of the radio resource information.
Abstract:
There is provided a communication control apparatus including an information acquisition unit that acquires information about channels, among frequency channels assigned to a primary system, available to a secondary system, a generation unit that generates a list of channels, among the channels available, recommended for a secondary usage node operating the secondary system, and a notification unit that notifies the secondary usage node of the list generated by the generation unit to allow the secondary usage node to select a channel for secondary usage.
Abstract:
A wireless communication apparatus includes: a first wireless communication section performing wireless communication on the basis of a first communication mode; a second wireless communication section performing wireless communication on the basis of a second communication mode using a different frequency band from the first communication mode; a beam learning signal generation section generating a beam learning signal for specifying a beam pattern at the time of the communication based on the second communication mode and transmitting the beam learning signal from the second wireless communication section; a response information acquisition section acquiring response information responding to the transmitted beam learning signal; and a preliminary information generation section generating preliminary information so as not to cause interference among a plurality of wireless communications using the second communication mode on the basis of the response information and transmitting the preliminary information from the first wireless communication section.
Abstract:
A base station includes a radio communication unit that establishes communication with a mobile communication terminal using a plurality of component carriers. The base station further includes a determination unit that determines a handover factor. The base station also includes a control unit allocates to the mobile communication terminal a measurement time interval for at least one component carrier from the plurality of component carriers according to the handover factor. A channel quality of the at least one component carrier of another base station is measured during the measurement time interval.
Abstract:
Random access operation is performed under a communication environment in which a plurality of communication modes having different transmission rate coexist with small overhead. A high-grade communication station spoofs information of a packet length and a rate in a decoding portion so that a value of (packet length)/(rate) corresponds to a duration where the communication is hoped to be stopped. The other station receiving the spoofed information receives the rest of the packet with the designated rate during the interval designated by the value of (packet length)/(rate). In this case, the packet length and the rate are not those of actually transmitted packet so that this packet is discarded.
Abstract:
An apparatus including: a first transmission processing unit that generates transmission signal sequences of multiple power layers that are to be multiplexed using power allocation; and a second transmission processing unit that processes a transmission signal sequence of a power layer using an interleaver, a scrambler, or a phase coefficient corresponding to the power layer for each of one or more of the multiple power layers. The apparatus improves accuracy of decoding of a desired signal when multiplexing/multiple access is performed using power allocation.
Abstract:
To adaptively interleave in accordance with communication channel conditions. Provided is a base station performing radio communication with a terminal apparatus on a communication channel formed by integrating a plurality of component carriers, including a quality acquisition unit that acquires channel quality of the communication channel for each of the component carriers and an interleaver that interleaves data signals transmitted on the communication channel in accordance with at least one of the channel quality acquired by the quality acquisition unit and available situations of communication resources for each of the component carriers.
Abstract:
[Object] To allow an increase in load on the base station to be suppressed when the device-to-device communication is performed.[Solution] There is provided a terminal apparatus capable of communicating with a base station, the terminal apparatus including an acquisition unit that acquires radio resource information related to a radio resource usable for device-to-device communication not via the base station, of radio resources controllable by the base station, and a determination unit that determines a size of data to be transmitted and received in the device-to-device communication on the basis of the radio resource information.
Abstract:
[Object] To achieve both prevention of harmful interference and promptness of power allocation under conditions in which multiple secondary systems may be managed.[Solution] Provided is a communication control apparatus including: a calculation unit configured to calculate a transmit power to be allocated, including a nominal transmit power and a margin for interference avoidance, for one or more secondary systems that secondarily use frequency channels protected for a primary system; and a determination unit configured to determine a variation in a number of secondary systems, and cause the calculation unit to adjust the margin for interference avoidance on a basis of the determined variation.
Abstract:
[Object] To enable a frequency band to be used with higher efficiency.[Solution] There is provided an apparatus including: an acquisition unit configured to acquire information regarding a second base station that is a second base station having a coverage area that overlaps a coverage area of a first base station capable of using a frequency band with priority, and is incapable of using the frequency band with priority; and a control unit configured to request the second base station to transmit data destined for a terminal apparatus that accesses the first base station to the terminal apparatus.