摘要:
A driving device includes a movable object, a driving part for moving the object, a manual operation member, a pulse generator for generating a plurality of pulses successively according to an operation of the operation member with pulse intervals varying depending on its operation speed, a data forming part for forming a plurality of data on the basis of the plurality of pulses successively according to the pulse intervals, a storage part for storing successively the plurality of data and a reading part for reading out the stored plurality of data successively and determining a drive parameter for each of the read out data corresponding to the speed for moving the object by the driving part by using the data value. The timing for reading out subsequent data is set after completion of the movement of the object on the basis of a prior data value.
摘要:
A method of production of conductive particles able to suppress growth of the conductive particles at the firing stage, able to effectively prevent spheroidization and electrode disconnection, able to effectively suppress a drop in electrostatic capacity, and able to efficiently produce core particles covered by thin coating layers without abnormal segregation of the coating layer metal particularly even when the internal electrode layers are reduced in thickness. A method of producing conductive particles comprising cores 51 having nickel as their main ingredients and coating layers 52 covering their surroundings. A core powder, a water-soluble metal salt containing a metal or alloy forming the coating layers 52, and a surfactant (or water-soluble polymer compound) are mixed to deposite by reduction a metal or alloy for forming the coating layers 52 on the outer surfaces of the core powder. The metal or alloy forming the coating layers 52 has at least one type of elements selected from Ru, Rh, Re, and Pt as a main ingredient.
摘要:
A multilayer ceramic capacitor having a laminate including alternately stacked dielectric layers of a sintered compact composed of crystal particles of a dielectric porcelain composite and internal-electrode layers. The dielectric porcelain composite comprises a primary constituent containing barium titanate; a first accessory constituent composed of at least one of MgO, CaO, BaO, and SrO; a second accessory constituent containing silicon oxide as a major constituent; a third accessory constituent composed of at least one of V2O5, MoO3, and WO3; a fourth accessory constituent composed of an oxide of R1 (wherein R1 is at least one of Sc, Er, Tm, Yb, and Lu); a fifth accessory constituent composed of CaZrO3 or a combination of CaO and ZrO2; and a sixth accessory constituent composed of an oxide of R2 (wherein R2 is at least one of Y, Dy, Ho, Tb, Gd, and Eu).
摘要:
The optical image stabilizer shifts an image stabilizing element with respect to an optical axis of an optical system to reduce image shake. The stabilizer includes a lock ring which is rotatable to a lock position to limit shift of the image stabilizing element and to a lock-releasing position to allow the shift of the image stabilizing element, an actuator which rotates the lock ring to the lock position and the lock-releasing position, and a biasing mechanism which mechanically biases the lock ring rotated to the lock position toward the lock position and biases the lock ring rotated to the lock-releasing position toward the lock-releasing position.
摘要:
A green sheet coating material includes ceramic powder and a binder resin containing a butyral based resin as the main component, which furthermore includes a xylene based resin as a tackifier. The xylene based resin is included in a range of 1.0 wt % or less, more preferably 0.1 or more and 1.0 wt % or less, and particularly preferably more than 0.1 and 1.0 wt % or less with respect to 100 parts by weight of ceramic powder.
摘要:
An electronic device having an element body comprising an internal electrode layer, wherein the internal electrode layer includes an alloy, the alloy contains a nickel (Ni) element and at least one kind of element selected from ruthenium (Ru), rhodium (Rh), rhenium (Re) and platinum (Pt), and a content of each component is Ni: 80 to 100 mol % (note that 100 mol % is excluded) and a total of Ru, Rh, Re and Pt: 0 to 20 mol % (note that 0 mol % is excluded).
摘要:
A method of production of conductive particles able to suppress growth of the conductive particles at the firing stage, able to effectively prevent spheroidization and electrode disconnection, able to effectively suppress a drop in electrostatic capacity, and able to efficiently produce core particles covered by thin coating layers without abnormal segregation of the coating layer metal particularly even when the internal electrode layers are reduced in thickness. A method of producing conductive particles comprising cores 51 having nickel as their main ingredients and coating layers 52 covering their surroundings. A core powder, a water-soluble metal salt containing a metal or alloy forming the coating layers 52, and a surfactant (or water-soluble polymer compound) are mixed to deposite by reduction a metal or alloy for forming the coating layers 52 on the outer surfaces of the core powder. The metal or alloy forming the coating layers 52 has at least one type of elements selected from Ru, Rh, Re, and Pt as a main ingredient.
摘要:
A printing and drying method comprising laying a support sheet 20 elongated in the long direction so as to bridge both a printing zone 42 and a drying zone 44, in the printing zone 42, giving the support sheet 20 a first tension F1, in that state, printing the support sheet 20 with predetermined patterns, then feeding the support sheet 20 toward the drying zone 44, in the drying zone 44, giving the support sheet 20 on which the predetermined patterns were printed a second tension F2, and in that state, drying it in a drying chamber 62. The first tension F1 and the second tension F2 are given by separate tension giving means, and the second tension F2 is tension given along the support sheet 20 in the long direction and able to prevent shrinkage of the support sheet 20 in the long direction while passing through the drying zone 44.
摘要:
It is an object of the present invention is to provide a method for manufacturing a multi-layered ceramic electronic component which can reliably prevent a multi-layered unit including a ceramic green sheet and an electrode layer from being damaged and efficiently laminate a desired number of the multi-layered units, thereby manufacturing the multi-layered ceramic electronic component. The method for manufacturing a multi-layered ceramic electronic component according to the present invention includes a step of laminating a plurality of multi-layered units each formed by laminating a ceramic green sheet, an electrode layer and a release layer on a support sheet in this order, the method further including steps of positioning the multi-layered unit on a base substrate so that the surface of the release layer is contact with an agglutinant layer formed on the surface of the base substrate in such a manner that the bonding strength between itself and the support substrate is higher than the bonding strength between the support sheet and the ceramic green sheet and lower than the bonding strength between itself and the release layer, pressing it and laminating multi-layered units on the base substrate.
摘要:
A method of production of peeling layer paste used for producing a multilayer electronic device, having a step of preparing a primary slurry containing a ceramic powder having an average particle size of 0.1 μm or less, a binder, and a dispersion agent and having a nonvolatile concentration of 30 wt % or more, a step of adding to the primary slurry a binder-lacquer solution to dilute the primary slurry to prepare a secondary slurry having a nonvolatile concentration of 15 wt % or less and a content of the binder of 12 parts by weight or more with respect to 100 parts by weight of the ceramic powder, and a high pressure dispersion treatment step of running the secondary slurry through a wet jet mill to apply to the secondary slurry a shear rate of 1.5×106 to 1.3×107 (1/s).