Abstract:
A method for exposing an electrode terminal covered with an organic film in a light-emitting device without damaging the electrode terminal is provided. In a region of the electrode terminal to which electric power from an external power supply or an external signal is input, an island-shaped organic compound-containing layer is formed and the organic film is formed thereover. The organic film is removed by utilizing low adhesion of an interface between the organic compound-containing layer and the electrode terminal, whereby the electrode terminal can be exposed without damage to the electrode terminal.
Abstract:
A highly reliable flexible light-emitting device is provided. The light-emitting device includes a first flexible substrate, a second flexible substrate, a light-emitting element between the first flexible substrate and the second flexible substrate, a first bonding layer; and a second bonding layer in a frame shape surrounding the first bonding layer. The first bonding layer and the second bonding layer are between the second flexible substrate and the light-emitting element. The light-emitting element includes layer containing a light-emitting organic compound between the pair of electrodes. The second bonding layer has a higher gas barrier property than the first bonding layer.
Abstract:
A highly reliable light-emitting device and a manufacturing method thereof are provided. A light-emitting element and a terminal electrode are formed over an element formation substrate; a first substrate having an opening is formed over the light-emitting element and the terminal electrode with a bonding layer provided therebetween; an embedded layer is formed in the opening; a transfer substrate is formed over the first substrate and the embedded layer; the element formation substrate is separated; a second substrate is formed under the light-emitting element and the terminal electrode; and the transfer substrate and the embedded layer are removed. In addition, an anisotropic conductive connection layer is formed in the opening, and an electrode is formed over the anisotropic conductive connection layer. The terminal electrode and the electrode are electrically connected to each other through the anisotropic conductive connection layer.
Abstract:
A highly reliable light-emitting module including an organic EL element or a light-emitting device using a highly reliable light-emitting module including an organic EL element is provided. Alternatively, a method of manufacturing a highly reliable light-emitting module including an organic EL element, or a method of manufacturing a light-emitting device using a highly reliable light-emitting module including an organic EL element is provided. The light-emitting module has a structure in which a light-emitting element formed over a first substrate and a viscous material layer are sealed in a space between the first substrate and a second substrate which face each other, with a sealing material surrounding the light-emitting element. The viscous material layer is provided between the light-emitting element and the second substrate and includes a non-solid material and a drying agent which reacts with or adsorbs an impurity.
Abstract:
A light-emitting device or a display device that is less likely to be broken is provided. Provided is a light-emitting device including an element layer and a substrate over the element layer. At least a part of the substrate is bent to the element layer side. The substrate has a light-transmitting property and a refractive index that is higher than that of the air. The element layer includes a light-emitting element that emits light toward the substrate side. Alternatively, provided is a light-emitting device including an element layer and a substrate covering a top surface and at least one side surface of the element layer. The substrate has a light-transmitting property and a refractive index that is higher than that of the air. The element layer includes a light-emitting element that emits light toward the substrate side.
Abstract:
A light-emitting element, a bonding layer, and a frame-like partition are formed over a substrate. The partition is provided to surround the bonding layer and the light-emitting element, with a gap left between the partition and the bonding layer. A pair of substrates overlap with each other under a reduced-pressure atmosphere and then exposed to an air atmosphere or a pressurized atmosphere, whereby the reduced-pressure state of a space surrounded by the pair of substrates and the partition is maintained and atmospheric pressure is applied to the pair of substrates. Alternatively, a light-emitting element and a bonding layer are formed over a substrate. A pair of substrates overlap with each other, and then, pressure is applied to the bonding layer with the use of a member having a projection before or at the same time as curing of the bonding layer.
Abstract:
Deterioration of a storage battery included in an electronic device is reduced. Power consumption of an electronic device is reduced. A power feeding device having excellent performance is provided. The power feeding device includes a power feeding coil, a control circuit, and a neural network and has a function of charging a storage battery with a wireless signal supplied by the power feeding coil. The control circuit has a function of estimating a remaining capacity value of the storage battery, the control circuit has a function of supplying the estimated remaining capacity value to the neural network, the neural network outputs a value corresponding to the supplied remaining capacity value to the control circuit, the control circuit determines a charge condition for the storage battery on the basis of the value output by the neural network, and the power feeding device has a function of charging the storage battery under the determined charge condition.
Abstract:
A display device whose aspect ratio can be changed is provided. The display device includes a plurality of display units and a plurality of driver circuit units. The plurality of display units each include a light-emitting portion and a connection region. The plurality of driver circuit units each include a driver circuit portion and a connection region. The connection regions of the adjacent units overlap with each other and one shaft passes through the connection regions. The adjacent units are electrically connected to each other with the one shaft. With such a structure, an angle between the adjacent units electrically connected to each other with one shaft can be changed, which enables the aspect ratio of the display device to be changed.
Abstract:
It is difficult to know the remaining amount and the degradation state of a power storage device, and it is also difficult to estimate how long the power storage device can be used. Data obtained through midway discharge and mid-to-full charge is used as the learning data to calculate the degradation state and the capacity. In other words, the learning data includes both a discharge curve of midway discharge and a charge curve of mid-to-full charge, and neural network processing is performed with the use of the learned data.
Abstract:
A highly reliable light-emitting device and a manufacturing method thereof are provided. A light-emitting element and a terminal electrode are formed over an element formation substrate; a first substrate having an opening is formed over the light-emitting element and the terminal electrode with a bonding layer provided therebetween; an embedded layer is formed in the opening; a transfer substrate is formed over the first substrate and the embedded layer; the element formation substrate is separated; a second substrate is formed under the light-emitting element and the terminal electrode; and the transfer substrate and the embedded layer are removed. In addition, an anisotropic conductive connection layer is formed in the opening, and an electrode is formed over the anisotropic conductive connection layer. The terminal electrode and the electrode are electrically connected to each other through the anisotropic conductive connection layer.