Abstract:
An exemplary anti-interference wiring assembly for a liquid crystal display device includes a base substrate (210), gate lines (201) formed at the base substrate, anti-interference wires (230), and data lines (202). The anti-interference wires are provided between the gate lines and the data lines and are insulated from the gate lines and the data lines respectively. The anti-interference wires are configured for carrying signals having a reverse phase compared to signals carried by the corresponding gate lines.
Abstract:
An exemplary method for fabricating a polysilicon layer includes the following steps. A substrate (10) is provided and an amorphous silicon layer (12) is formed over the substrate. An excimer laser generator (13) for generating a pulse excimer laser beams collectively having the shape of a generally rectangular shaft is provided to melt a first area (15) of the amorphous silicon layer with the pulse excimer laser beams. The excimer laser generator is moved a distance to melt a second area of the amorphous layer spaced a short distance away from the first area. At least a subsequent third melted area spaced a short distance away from the second melted area is formed, with each subsequent melted area is spaced as short distance away from the immediately preceding melted area.
Abstract:
An exemplary electro-wetting display (EWD) device (30) includes: a first substrate (31); a second substrate (38) parallel to the first substrate; partition walls (34) arranged in a lattice on the second substrate thereby defining a plurality of pixel regions (P); a first fluid (35); and a second fluid (36). The first and second fluids are immiscible with each other and disposed between the first and second substrates. The second fluid is electro-conductive or polar. The first fluid is provided between the second substrate and the second fluid. Each pixel region includes two switch elements (315, 316) and a storage capacitor (336). The switch elements and the storage capacitor are disposed at a same side of the pixel region.
Abstract:
An exemplary electro-wetting display (EWD) device includes a plurality of sub-pixel units. Each sub-pixel unit defines two opposite long sides and two opposite short sides. Each sub-pixel unit includes a first substrate, a second substrate facing toward the first substrate, a conductive first liquid and a polar second sandwiched between the first substrate and the second substrate, and an electrode. The first and second liquids are immiscible. The electrode is disposed at a surface of the second substrate facing the first liquid. The electrode defines an opening. A length of the opening as measured parallel to the nearest short side is not less than 0.8 times a length of the nearest short side.
Abstract:
A thin film transistor includes a substrate, a gate electrode formed on the substrate, a gate insulating layer covering the gate electrode and the substrate, an a-Si layer and a heavily doped a-Si layer on the gate insulating layer, a conductive film formed on the heavily doped a-Si layer, part of the a-Si layer, and the gate insulating layer, and a source electrode and a drain electrode on the conductive film. A work function of the conductive film is greater than a work function of the a-Si layer.
Abstract:
An exemplary PECVD device includes a first electrode (21), a second electrode (22) parallel to the first electrode, and a radio frequency (RF) circuit (23) providing energy for the two electrodes. The first electrode includes at least two separated sub-electrodes (211, 212). The RF circuit includes an RF power supply source (230) and at least two variable resistors (231, 232). The RF power supply source is connected to the at least two sub-electrodes via the at least two variable resistors respectively. The PECVD device can deposit a uniform thin film.
Abstract:
An exemplary thin film transistor (TFT) array substrate (200) includes: a substrate (210), a gate electrode (220) disposed on the substrate, a gate insulating layer (230) disposed on the substrate having the gate electrode, a lightly doped amorphous silicon (a-Si) layer (241) disposed on the gate insulating layer, a first a-Si layer (242) disposed on the lightly doped a-Si layer, a source electrode (251) and a drain electrode (252) disposed on the gate insulating layer and the a-Si layer. The thin film transistor array substrate has a low leakage current.
Abstract:
An exemplary field emission display includes a first substrate (21) and a second substrate (22) being at opposite sides of the field emission display, a metal layer (210) disposed on an inner surface of the first substrate, a transparent electrode (221) disposed on an inner surface of the second substrate and spaced apart from the metal layer, a fluorescent layer (223) disposed on the transparent electrode, and a poly-silicon layer (212) disposed on the metal layer. The poly-silicon layer defines a plurality of tips (218) pointing toward the fluorescent layer. A method for manufacturing a field emission display is also provided.
Abstract:
An exemplary anti-interference wiring assembly for a liquid crystal display device includes a base substrate (210), gate lines (201) formed at the base substrate, anti-interference wires (230), and data lines (202). The anti-interference wires are provided between the gate lines and the data lines and are insulated from the gate lines and the data lines respectively. The anti-interference wires are configured for carrying signals having a reverse phase compared to signals carried by the corresponding gate lines.
Abstract:
An exemplary liquid crystal display device (3) includes a first substrate (31), a second substrate (32) opposite to the first substrate, and a liquid crystal layer (34) disposed between the first and second substrates. A number of data lines (322) is disposed on the first substrate. A number of photospacers (36) is disposed on one of the first and second substrates, and the photospacer is disposed over a corresponding one of the data lines and at least partly overlies the corresponding data line. The photospacers have a dielectric constant lower than 3.9. Thus, the liquid crystal display device has a lower coupling capacitance between the data lines and other elements. This facilitates a reduction crosstalk during operation of the liquid crystal display device, so that the liquid crystal display can provide better quality images.