Abstract:
Systems and methods for designing, using, and/or implementing hybrid communication networks are described. In various embodiments, these systems and methods may be applicable to power line communications (PLC). For example, one or more of the techniques disclosed herein may include methods to coordinate medium-to-low voltage (MV-LV) and low-to-low voltage (LV-LV) PLC networks when the MV-LV network operates in a frequency subband mode and the LV-LV network operates in wideband mode (i.e., hybrid communications). In some cases, MV routers and LV routers may have different profiles. For instance, MV-LV communications may be performed using MAC superframe structures, and first-level LV to lower-level LV communications may take place using a beacon mode. Lower layer LV nodes may communicate using non-beacon modes. Also, initial scanning procedures may encourage first-to-second-level LV device communications rather than MV-to-first-level LV connections.
Abstract:
A communication system and method includes a receiver for receiving a communication signal coupled through a physical medium in accordance with a protocol. An interface formed in a single substrate receives from the receiver an indication of the signal strength of the received communication signal. The interface also decodes the information contained in the received communication signal. For example, the interface sends the information decoded from the received communication signal to a first application for consuming the decoded information. The interface also sends the indication of the signal strength of the received communication signal to a second application for generating a quality determination of the physical medium in response to the indication of the signal strength of the received communication signal.
Abstract:
In a disclosed embodiment, a method for communication in a network includes receiving, at a first device registered to the network, a physical layer (PHY) frame that includes a PHY header and a MAC header. The PHY frame may further include a MAC payload. The PHY header includes a destination address field. The method further includes comparing a network address of the first device to the destination address field to determine whether the destination address field stores a value having the same number of bits as the network address. When the comparison indicates that the value stored by the destination address field does not have the same number of bits as the network address, the method skips decoding the MAC header and the MAC payload.
Abstract:
Systems and methods for implementing coexistence by requesting access to a channel in power line communications (PLC) are described. In an illustrative embodiment, a method performed by a PLC device, such as a PLC meter, may include detecting a communication from foreign PLC device on a PLC network in response to a foreign preamble received by the PLC device, determining whether a threshold back-off duration has been reached, and transmitting a channel access request in response to a determination that the threshold back-off duration has been reached.
Abstract:
A power line communication (PLC) device comprises a processor and a memory coupled to the processor. The memory is configured to store program instructions executable by the processor to cause the PLC device perform operations. One or more time slots are sequentially scan in each of a plurality of frequency bands. A packet transmitted by a second PLC device to the PLC device over one of the plurality of frequency bands is detected. Additional packets received from the second PLC device across the plurality of frequency bands based, at least in part, upon the detected packet are synchronized. The additional packets are organized in a plurality of frames, each of the plurality of frames having been transmitted by the second PLC device to the PLC device over a respective one of the plurality of frequency bands. Each frame has a plurality of time slots, and each time slot has a pair of beacon and bandscan packets, Each bandscan packet includes information indicating a frequency band distinct from any of the plurality of different frequency bands to be used by the second PLC device to communicate with the first PLC device in a direction from the second PLC device to the first PLC device.
Abstract:
Systems for channel selection in power line communications (PLC) are described. In some embodiments, a PLC device may include a processor and a memory. The memory stores instructions executable by the processor to cause the PLC device perform operations. One or more time slots in each of a plurality of frequency bands are sequentially scanned. A packet transmitted by a second PLC device to the PLC device over one of the plurality of frequency bands is detected. Additional packets received from the second PLC device are synchronized across the plurality of frequency bands based, at least in part, upon the detected packet. The additional packets are organized in a plurality of frames. Each of the plurality of frames having been transmitted by the second PLC device to the PLC device over a respective one of the plurality of frequency bands. Each frame has a plurality of time slots, and each time slot has a pair of beacon and bandscan packets.
Abstract:
In a method for communicating with a plurality of devices using different communication protocols, a signal is received at a transceiver device from a neighbor device via a physical layer of a communication media. At a first time the signal contains a header frame from a first device conforming to a first communication protocol and at another time the signal contains a header frame from a second device conforming to a second communication protocol. The transceiver determines which of the different communication protocols is being used by each of the plurality of devices. The transceiver may then process inbound payload data using the indentified protocol type. Data frames are transmitted to the first device using the first communication protocol and data frames are transmitted to the second device using the second communication protocol.
Abstract:
Systems and methods for routing protocols for power line communications (PLC) are described. In some embodiments, a method performed by a PLC device, such as a PLC meter, may include selecting one or more transmit sub-bands on which to transmit frames, where the transmit sub-bands comprise groups of six carrier frequencies. The PLC device then generates a frame comprising a tone map that indicates which transmit sub-bands are used to carry data for the frame. The tone map using two bits per transmit sub-band to indicate a status of each transmit sub-band. The PLC device then transmits the frame on the selected transmit sub-bands using OFDM. A resolution bit and a mode bit may be used to provide additional information about the transmit sub-bands, such as an amount of power adjustment that has been applied to carrier frequencies and whether dummy bits are transmitted on unused carrier frequencies.
Abstract:
Embodiments include methods of powerline communications using a preamble with band extension is provided. A method may include receiving a packet data unit PDU. Bit-level repetition is applied to at least a portion of the PDU to create a repeated portion. Interleaving is performed per a subchannel. Pilot tones are inserted in the interleaved portion. Each data tone is modulated with respect to a nearest one of the inserted pilot tones. The PDU is transmitted over a power line.
Abstract:
Methods for building, transmitting, and receiving frame structures in power line communications (PLC) are described. Various techniques described herein provide a preamble design using one or more symbols. One or more preamble symbols may be interspersed within a header portion of a PLC frame to facilitate estimation of a frame boundary and/or sampling frequency offset, for example, in the presence of impulsive noise.