Abstract:
A system for operating a robotic arm, comprises a controller and a robotic arm. The controller receives an indication that a stall of a rotary milking platform in which a dairy livestock is located has moved into an area adjacent a robotic arm that is detached from the rotary milking platform. The controller also determines whether a milking cluster is attached to the dairy livestock. The robotic arm is communicatively coupled to the controller and extends between the legs of the dairy livestock if the controller determines that the milking cluster is not attached to the dairy livestock. The robotic arm does not extend between the legs of the dairy livestock if the controller determines that the milking cluster is attached to the dairy livestock.
Abstract:
A method for applying disinfectant to the teats of a dairy livestock, comprises receiving a trigger signal indicating that a stall of a rotary milking platform housing a dairy livestock is located adjacent to a track, the track having a carriage carrying a robotic arm mounted thereto. The method continues by communicating a first signal to a first actuator coupled to the track and the carriage, the first signal causing operation of the first actuator such that the carriage moves along the track in relation to the rotary milking platform. The method concludes by communicating one or more additional signals to one or more actuators of the robotic arm, the one or more additional signals causing operation of the one or more actuators of the robotic arm such that at least a portion of the robotic arm extends between the hind legs of a dairy livestock.
Abstract:
A system includes a milking stall to accommodate a dairy livestock and a robotic attacher. The robotic attacher extends under the dairy livestock and comprises a nozzle. The robotic attacher is operable to rotate such that, during a first operation, the nozzle is positioned generally on the bottom of the robotic attacher, and during a second operation, the nozzle is positioned generally on the top of the robotic attacher.
Abstract:
A method comprises extending a robotic attacher under a dairy livestock positioned in a milking stall, wherein the robotic attacher comprises a nozzle that is positioned generally on the bottom of the robotic attacher during a first operation. The method further comprises rotating the robotic attacher during a second operation such that the nozzle is positioned generally on the top of the robotic attacher.
Abstract:
A method for applying a substance to the teats of a dairy livestock comprises extending a robotic arm between the legs of a dairy livestock positioned in a stall. The method continues by rotating a linear member of a spray tool about an axis that is perpendicular to the robotic arm, wherein the linear member has a perimeter that lies within an outer perimeter of the robotic arm when the robotic arm extends between the hind legs of the dairy livestock. The method continues by discharging a substance as the linear member rotates.
Abstract:
A robotic attacher comprises a main arm, a supplemental arm coupled to the main arm, and a gripping portion coupled to the supplemental arm. The gripping portion comprises at least one nozzle and is operable to rotate such that during a first mode of operation, the nozzle is positioned away from the top of the gripping portion, and during a second mode of operation, the nozzle is positioned generally on the top of the gripping portion.
Abstract:
A method comprises determining a tangent to the rear of an udder of a dairy livestock, and determining a tangent to the bottom of the udder of the dairy livestock. The method continues by determining a position relative to the intersection of the two tangents, and extending a robot arm to the determined position.
Abstract:
A system comprises a milking box, a robotic attacher, a sensor, and a controller. The milking box has a stall to accommodate a dairy livestock. The stall comprises a first exit gate on a first side of the stall leading to a first sorting region and a second exit gate on a second side of the stall leading to a second sorting region. The robotic attacher extends from the rear between the hind legs of the dairy livestock. The sensor identifies the dairy livestock within the milking box stall. The controller selects and opens the first exit gate or the second exit gate based at least in part upon the identity of the dairy livestock.
Abstract:
A robotic attacher includes an arm that extends between the legs of a dairy livestock and a gripping portion coupled to the arm. The gripping portion is operable to rotate such that at a first time, a nozzle is positioned generally on the bottom of the gripping portion, and at a second time, the nozzle is positioned generally on the top of the gripping portion.
Abstract:
A method of operating a robotic attacher, comprises extending a robotic attacher between the legs of a dairy livestock. The method further comprises attaching milking equipment to the dairy livestock using a gripping portion of the robotic attacher during a milking operation, wherein the gripping portion has a nozzle that is positioned away from a teat of the dairy livestock during the milking operation. The method further comprises rotating the gripping portion of the robotic attacher so that the nozzle is positioned to face a teat of the dairy livestock during a spraying operation.