Abstract:
A compound microscope device allowing simultaneous observation of one specimen by a transmission electron microscope and an optical microscope, is provided. A compound microscope device 1 of the present invention has a transmission electron microscope 2 and an optical microscope 4. A specimen 10 and a reflection mirror 41 are disposed on an electron optical axis C of an electron ray. The reflection mirror 41 is inclined from the electron optical axis C toward the optical object lens 43 and the specimen 10. Light from the specimen 10 (fluorescent light, reflection light, and the like) is reflected by the reflection mirror 41 and entered into the optical object lens 43. The electron ray from the electron microscope 2 passes through a mounting center hole 42 of the reflection mirror 41. This makes it possible to observe one specimen simultaneously by the electron microscope 2 and the optical microscope 4.
Abstract:
A display device which can ensure a sufficient adhesive strength on an adhering surface between each of a pair of substrates of a liquid crystal display panel and a sealing material is provided. A display device includes: a first substrate on which a predetermined integrated circuit is formed; a second substrate which is arranged on one surface of the first substrate in an overlapping manner; and an adhesive material which is arranged between the first substrate and the second substrate and has an annular planar shape as viewed from the surface of the first substrate, the adhesive material being provided for adhering the first substrate and the second substrate, wherein an outer periphery of the adhesive material as viewed from the surface of the first substrate includes a zone which is constituted of a plurality of first portions passing substantially the same position as an outer periphery of the surface of the first substrate and a plurality of second portions each of which is connected with the two neighboring first portions and has a center portion thereof in a peripheral direction retracted toward an inner peripheral side of the adhesive material as viewed from the surface of the first substrate.
Abstract:
A display device which can ensure a sufficient adhesive strength on an adhering surface between each of a pair of substrates of a liquid crystal display panel and a sealing material is provided. A display device includes: a first substrate on which a predetermined integrated circuit is formed; a second substrate which is arranged on one surface of the first substrate in an overlapping manner; and an adhesive material which is arranged between the first substrate and the second substrate and has an annular planar shape as viewed from the surface of the first substrate, the adhesive material being provided for adhering the first substrate and the second substrate, wherein an outer periphery of the adhesive material as viewed from the surface of the first substrate includes a zone which is constituted of a plurality of first portions passing substantially the same position as an outer periphery of the surface of the first substrate and a plurality of second portions each of which is connected with the two neighboring first portions and has a center portion thereof in a peripheral direction retracted toward an inner peripheral side of the adhesive material as viewed from the surface of the first substrate.
Abstract:
A display device which can ensure a sufficient adhesive strength on an adhering surface between each of a pair of substrates of a liquid crystal display panel and a sealing material is provided. A display device includes: a first substrate on which a predetermined integrated circuit is formed; a second substrate which is arranged on one surface of the first substrate in an overlapping manner; and an adhesive material which is arranged between the first substrate and the second substrate and has an annular planar shape as viewed from the surface of the first substrate, the adhesive material being provided for adhering the first substrate and the second substrate, wherein an outer periphery of the adhesive material as viewed from the surface of the first substrate includes a zone which is constituted of a plurality of first portions passing substantially the same position as an outer periphery of the surface of the first substrate and a plurality of second portions each of which is connected with the two neighboring first portions and has a center portion thereof in a peripheral direction retracted toward an inner peripheral side of the adhesive material as viewed from the surface of the first substrate.
Abstract:
In an inkjet device that ejects ink on a medium with an inkjet head, data conversion software generates ejection data and timing control data from pattern data that describe patterns of ejection target pixels. A timing control board outputs a drive waveform generation trigger signal and a data transfer request signal to a drive waveform generator board and a memory board, respectively. The drive waveform generator board generates drive waveforms according to drive waveform generation trigger signal. The memory board transfers ejection data to the driver board according to the data transfer request signal. The driver board controls ink ejection of each nozzle based on the ejection data. Therefore, the inkjet device is capable of highly accurate positioning of ink ejection with almost no increase in the amount of data.
Abstract:
In order to detect accurately a seating of clamped body and a clamping force at a seating, the workpiece supporting device has plural seating mechanisms 40. Each of the seating mechanisms 40 includes a load sensing element 45 receiving a clamping force or a fixing force. The load sensing element 45 consists of a material having a characteristic that said load sensing element is not substantially deformed by an applied load, especially it consists of a composite material dispersing a material having a pressure resistance effect or a magnetic resistance effect in a matrix of an electric insulation ceramics material. An abnormal clamping or fixing of the clamped body and an abnormal overload are detected by detecting an output from plural load sensing elements 45 supporting the clamped body.
Abstract:
In order to detect accurately a seating of clamped body and a clamping force at a seating, the workpiece supporting device has plural seating mechanisms 40. Each of the seating mechanisms 40 includes a load sensing element 45 receiving a clamping force or a fixing force. The load sensing element 45 consists of a material having a characteristic that said load sensing element is not substantially deformed by an applied load, especially it consists of a composite material dispersing a material having a pressure resistance effect or a magnetic resistance effect in a matrix of an electric insulation ceramics material. An abnormal clamping or fixing of the clamped body and an abnormal overload are detected by detecting an output from plural load sensing elements 45 supporting the clamped body.
Abstract:
A machining system includes a plurality of machine tools, a transfer apparatus configured to move a workpiece and a plurality of chip conveyors. Each of the plurality of chip conveyors includes a feeding device, a discharging opening and at least one of a first opening and a second opening. The first opening communicates with the discharging opening of an adjacent chip conveyor of the plurality of chip conveyors. The second opening receives chips generated by at least one of the plurality of machine tools. The discharging opening is for discharging the chips in the chip conveyor. The feeding device is configured to move the chips in the chip conveyor toward the discharging opening. A total length of the chip conveyors is easily regulated by changing the number of the chip conveyors so that the machining system is easily and quickly reconstructed.
Abstract:
Disclosed is a variable capacitance type encoder for measuring the length of an object to be measured on the basis of the amount of a probe which is brought into contact with the object. The amount of the movement of the probe is detected by the variation of electrostatic capacity between a rotary disc which is secured to the shaft, e.g., threaded shaft of the probe, and fixed plates which are secured to a baseplate so as to be opposed to the rotary disc. Two fixed plates are opposed to the rotary disc, and at least one fixed plate is provided with first and second transmitting electrodes composed of a pluarlity of electrode elements to which voltages of different phases are applied and which are annularly arranged at regular intervals in the circumferential direction of the fixed plate. The phase difference between the voltages which are applied to both transmitting electrodes is 180.degree.. On the other hand, the rotary disc is provided with first and second receiving electrodes for receiving signals of a common phase by electrostatic coupling with both transmitting electrodes. Each fixed plate is provided with an output electrode which electrostatically couples with the respective receiving electrode for fetching a signal through electrostatic coupling.
Abstract:
A digital analog converter which is especially suitable for use in converting a digital audio signal into an analog audio signal includes a unit pulse response signal generator for successively generating unit pulse response signals at a predetermined time interval, a digital data generator for generating digital data at the predetermined time interval, a multiplier for multiplying a unit pulse response signal generated at a certain time by a predetermined item of the digital data, and a mixer for producing an analog signal output by combining the unit pulse response signals that have been multiplied by the digital data.