摘要:
A method of producing a non-aqueous electrolyte secondary battery of the present invention includes the steps of: (1) producing a negative electrode precursor by applying a negative electrode slurry including graphite particles and a binder onto a negative electrode core material and drying the same to form a negative electrode material mixture layer; and (2) producing a negative electrode by compressing while heating the negative electrode precursor at a temperature at which the binder softens. In the step (2), a temperature at which the negative electrode precursor is heated and a force with which the negative electrode precursor is compressed are controlled such that the compressed negative electrode material mixture layer in the negative electrode includes 1.5 g or more of the graphite particles per 1 cm3 of the negative electrode material mixture layer, and that an average circular degree of the graphite particles maintains 70% or more of an average circular degree of graphite particles in the negative electrode precursor.
摘要:
A nonaqueous electrolyte secondary battery includes: a positive electrode 4 including a positive electrode current collector and a positive electrode material mixture layer containing a positive electrode active material and a binder and provided on the positive electrode current collector; a negative electrode 5; a porous insulating layer 6 interposed between the positive electrode 4 and the negative electrode 5; and a nonaqueous electrolyte. The positive electrode current collector contains aluminium. The positive electrode current collector has an average crystal grain size of 1.0 μm or more.
摘要:
In a nonaqueous electrolyte secondary battery in which an electrode plate group including a positive electrode plate and a negative electrode plate which have a positive electrode mixture layer formed on a positive electrode current collector to contain a positive electrode active material and a negative electrode mixture layer formed on a negative electrode current collector to contain a negative electrode active material, respectively, and are spirally wound or stacked with a separator interposed therebetween is encapsulated in a battery exterior packaging body with an electrolyte, the battery exterior packaging body includes a gas releasing valve for releasing gas in the battery exterior packaging body to the outside when a gas pressure in the battery exterior packaging body reaches a working pressure and is formed to be deformable where the gas pressure in the battery exterior packaging body is lower than the working pressure of the gas releasing valve.
摘要:
An alkaline storage battery including a strip-shaped porous metal substrate and a material mixture filled into the substrate. The substrate has an unfilled portion where the material mixture is not filled along at least one of two longitudinal sides of the substrate. The substrate has a weight per unit area of 150 to 350 g/m2. The material mixture contains an active material and an elastic polymer.
摘要翻译:一种碱性蓄电池,包括条状多孔金属基底和填充到基底中的材料混合物。 衬底具有未填充部分,其中材料混合物不沿着衬底的两个纵向侧面中的至少一个填充。 基板的单位面积重量为150〜350g / m 2。 该材料混合物含有活性材料和弹性聚合物。
摘要:
The nonaqueous electrolyte secondary battery of the invention includes: a wound-type electrode group including a long positive electrode, a long negative electrode, and a separator disposed between the positive electrode and the negative electrode; a nonaqueous electrolyte; and a prismatic battery case accommodating the electrode group and the nonaqueous electrolyte. A horizontal cross-section of the electrode group has a major axis and a minor axis. The positive electrode includes a positive electrode current collector and a positive electrode active material layer disposed thereon, and the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed thereon. A tensile strength of the positive electrode when an elongation percentage in a longitudinal direction of the positive electrode is 1% is not greater than 15 N/cm.
摘要:
A nonaqueous electrolyte secondary battery includes an electrode group 8 including a positive electrode 4 including a positive electrode current collector 4A and a positive electrode active material formed on the positive electrode current collector 4A, a negative electrode 5 including a negative electrode current collector 5A and a negative electrode active material formed on the negative electrode current collector 5A, and a porous insulating layer 6, the electrode group 8 being formed by winding or stacking the positive electrode 4 and the negative electrode 5 with the porous insulating layer 6 interposed. The positive electrode 4 has a tensile extension equal to or higher than 3.0%. The porous insulating layer 6 is made of a material containing aramid resin. Hence, even when the nonaqueous electrolyte secondary battery is destroyed by crush, occurrence of an internal short circuit in the battery can be prevented, thereby suppressing abnormal heat generation caused by an internal short circuit.
摘要:
A non-aqueous electrolyte secondary battery includes an electrode assembly formed by winding positive and negative electrodes, and an insulating layer together. Each of the electrodes has a core sheet and mixture layers formed on both sides of the sheet. The insulating layer electrically insulates the electrodes. At least one of the electrodes includes a core-exposed portion continuous parallel to the winding direction. Each of the mixture layers has an inclined weight region where the amount of mixture per unit area decreases toward the core-exposed portion, and a constant weight region in which the amount of mixture per unit area is constant. The inclined weight region has a width of not more than 0.2 of the width of the mixture layers and has an average mixture density of not less than 40% and not more than 99% of the mixture density of the constant weight region.
摘要:
An alkaline storage battery comprising: a positive electrode plate; a negative electrode plate; separators interposed between the positive electrode plate and the negative electrode plate; and an alkaline electrolyte, wherein a first edge of the positive electrode plate and a first edge of the negative electrode plate serve as current collecting portions, at least a second edge of at least the positive electrode plate is covered with polyethylene resin on an end face and peripheral sides thereof, the second edge being positioned opposite to the first edge, and the polyethylene resin film formed at the second edge of the positive electrode plate adheres to the separators positioned on both sides of the positive electrode plate.
摘要:
A nonaqueous electrolyte secondary battery including a positive electrode including a positive electrode current collector carrying a positive electrode material mixture layer thereon, a negative electrode including a negative electrode current collector carrying a negative electrode material mixture layer thereon, a separator provided between the positive electrode and the negative electrode and a nonaqueous electrolyte solution, wherein the positive electrode current collector is a conductive body containing aluminum and the positive electrode material mixture layer includes a first material mixture layer and a second material mixture layer formed on the first material mixture layer. The first material mixture layer is made of a first material mixture containing a first organic material which is soluble or dispersible in water and the second material mixture layer is made of a second material mixture containing a second organic material which is soluble or dispersible in an organic solvent.
摘要:
A non-aqueous electrolyte secondary battery has a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution. The positive electrode has a theoretical capacity per unit area from 3.0 to 4.5 mAh/cm2. The non-aqueous electrolyte solution contains ethylene carbonate (EC), ethylmethyl carbonate (EMC), and dimethyl carbonate (DMC) as solvents, and LiPF6 as an electrolyte, with volume ratios from 10 to 20% for EC, 10 to 20% for EMC, and 60 to 80% for DMC relative to all the solvents in the electrolyte solution. The concentration of the LiPF6 is from 1.30 to 1.50 mol/L.