摘要:
A normally-off HEMT is made by first providing a substrate having its surface partly covered with an antigrowth mask. Gallium nitride is grown by epitaxy on the masked surface of the substrate to provide an electron transit layer comprised of two flat-surfaced sections and a V-notch-surfaced section therebetween. The flat-surfaced sections are formed on unmasked parts of the substrate surface whereas the V-notch-surfaced section, defining a V-sectioned notch, is created by lateral overgrowth onto the antigrowth mask. Aluminum gallium nitride is then deposited on the electron transit layer to provide an electron supply layer which is likewise comprised of two flat-surfaced sections and a V-notch-surfaced section therebetween. The flat-surfaced sections of the electron supply layer are sufficiently thick to normally generate two-dimensional electron gas layers due to heterojunctions thereof with the first and the second flat-surfaced section of the electron transit layer. The V-notch-surfaced section of the electron supply layer is not so thick, normally creating an interruption in the two-dimensional electron gas layer.
摘要:
A radial piston pump for low-viscosity fuel according to a first aspect of the invention comprises a pump housing, which is constituted of as few as two structural bodies (from among a drive-side housing member 2A, a fixed cylinder 81 and a cover 4), and a leaf valve member 82 which is formed with intake valves 87 for opening and closing intake side passages 27 and discharge valves 88 for opening and closing discharge side passages 28 and is sandwiched between two structural bodies (fixed cylinder 81 and cover 4). The first aspect of the invention reduces the number of components constituting the pump housing, enables highly precise overall axial alignment, prevents wobbling of a pump shaft 9 of the pump, increases performance and reliability and reduces cost. A radial piston pump for low-viscosity fuel according to a second aspect of the invention comprises a leaf valve member 205 formed in one and the same plane thereof with overflow ports communicating with an overflow passage 59 in the pump housing, intake valves 87 communicating with intake side passages 27 and discharge valves 88 communicating with discharge side passages 28. The third aspect of the invention provides a method for assembling the radial piston pump for low-viscosity fuel according to the second aspect of the invention.
摘要:
An illumination device including a light source device includes a light source being constituted by LED(s); a light source side reflective plate to which the light source is fixed; an emission side reflective plate facing the light source side reflective plate; and a fixing means for fixing the both reflective plates, wherein the emission side reflective plate is formed so that a portion thereof facing the light source has the highest optical reflectance and the lowest optical transmittance while the optical reflectance decreases and the optical transmittance increases farther away from the light source, and the distance between the both reflective plates is greatest at a portion where the light source is disposed, while the distance decreases at portions farther away from the portion where the light source is disposed. Thus the device can supply light in a substantially uniform manner from a light irradiation surface.
摘要:
Device having reduced buffer leak on GaN substrate. In HEMT device, n-GaN (n-type GaN wafer) is used as substrate 11. Non-doped AlpGa1-pN layer with non-uniform composition p is formed on substrate 11 as buffer layer 12. On buffer layer 12, channel layer 13 of semi-insulating GaN and electron supply layer 14 of n-AlGaN are sequentially formed. In buffer layer 12, substrate connection region 121 where p=0 (GaN) is formed on lower end side, and active layer connection region 122 where value of p is also 0 (GaN) is formed on upper end side (channel layer 13 side). High Al composition region 123 where value of p is set to 1 (p=1) (AlN) is formed between substrate connection region 121 and active layer connection region 122. Resistivity of the high Al composition region 123 is highest in the buffer layer.
摘要:
A nitride semiconductor device includes: a main semiconductor region comprising a first nitride semiconductor layer having a first band gap, and a second nitride semiconductor layer having a second band gap larger than the first band gap, a heterojunction being formed between the first nitride semiconductor layer and a the second nitride semiconductor layer such that two-dimensional electron gas layer can be caused inside the first nitride semiconductor layer based on the heterojunction; a source electrode formed on the main semiconductor region; a drain electrode formed on the main semiconductor region and separated from the source electrode; a third nitride semiconductor layer formed on the first nitride semiconductor layer and between the source electrode and the drain electrode; and a gate electrode formed on the third nitride semiconductor layer. The third nitride semiconductor layer has a third band gap smaller than the first band gap.
摘要:
A method of manufacturing a semiconductor device, in which a second semiconductor layer of AlxGa1-x-yInyN (wherein x, y, and x+y satisfy x>0, y≧0, and x+y≦1, respectively) on a first semiconductor layer of GaN by hetero-epitaxial growth using a MOCVD method, the method including the steps of: (a) supplying N source gas and Ga source gas to form the first semiconductor layer; (b) supplying the N source gas without supplying the Ga source gas and Al source gas, after step (a); (c) supplying the N source gas and the Al source gas without supplying the Ga source gas, after step (b); and (d) supplying the N source gas, the Ga source gas and the Al source gas to form the second semiconductor layer, after step (c).
摘要翻译:一种半导体器件的制造方法,其中Al x Ga 1-x-y In y N(其中x,y,x + y分别满足x> 0,y> = 0,x + y @ 1)的第二半导体层对 通过使用MOCVD方法通过异质外延生长的GaN的第一半导体层,所述方法包括以下步骤:(a)提供N源气体和Ga源气体以形成第一半导体层; (b)在步骤(a)之后,不提供Ga源气体和Al源气体供给N源气体; (c)在步骤(b)之后,不提供Ga源气体来供给N源气体和Al源气体; 和(d)在步骤(c)之后,供给N源气体,Ga源气体和Al源气体以形成第二半导体层。
摘要:
A capsule endoscope system provided with a magnetic field generating apparatus including an input section for inputting identification information A and a magnetic field generating section that generates a magnetic field signal that controls a capsule endoscope, and the capsule endoscope including an in-vivo information acquiring section, a battery, a magnetic field receiving section, a storage section that stores identification information B, a control section and a comparing section that compares the identification information A with the identification information B and judges whether both pieces of information are the same or different, wherein when the judgment by the comparing section is a judgment that both pieces of information are the same, the control section supplies or shuts off power from the battery to the in-vivo information acquiring section.
摘要:
A semiconductor device is formed on a semiconductor substrate, which is comprised of: a base substrate; and a multilayer being formed on the base substrate and having a surface serving for an interface with the semiconductor device, the multilayer including alternating layers of a first compound semiconductor and a second compound semiconductor materially distinguishable from the first compound semiconductor, one selected from the group consisting of the first compound semiconductor and the second compound semiconductor being doped with one selected from the group consisting of carbon and transition elements.
摘要:
A semiconductor device reduces the on-resistance and, at the same time, raises the breakdown voltage. The drain electrode 20 of the semiconductor device runs through cap layer 13 and electron supply layer 12 and gets to a position lower than two-dimensional electron gas layer 14 in channel layer 11. Thus, the drain electrode 20 directly contacts the channel layer 11, the electron supply layer 12 and the cap layer 13. Angles (acute angles) θ, ø and ψ are formed by the drain electrode 20 and the channel layer 11, the electron supply layer 12 and the cap layer 13 as viewed in the direction in which a hetero interface is formed (the transverse direction in FIG. 1) and relationships of ø
摘要:
A method of manufacturing a semiconductor device, in which a second semiconductor layer of AlxGa1-x-yInyN (wherein x, y, and x+y satisfy x>0, y≧0, and x+y≦1, respectively) on a first semiconductor layer of GaN by hetero-epitaxial growth using a MOCVD method, the method including the steps of: (a) supplying N source gas and Ga source gas to form the first semiconductor layer; (b) supplying the N source gas without supplying the Ga source gas and Al source gas, after step (a); (c) supplying the N source gas and the Al source gas without supplying the Ga source gas, after step (b); and (d) supplying the N source gas, the Ga source gas and the Al source gas to form the second semiconductor layer, after step (c).
摘要翻译:一种制造半导体器件的方法,其中Al x Ga 1-x-y In y N(其中x,y和x + y分别满足x> 0,y≥0和x + y≦̸ 1)的第二半导体层 使用MOCVD方法通过异质外延生长的GaN的第一半导体层,所述方法包括以下步骤:(a)提供N源气体和Ga源气体以形成第一半导体层; (b)在步骤(a)之后,不提供Ga源气体和Al源气体供给N源气体; (c)在步骤(b)之后,不提供Ga源气体来供给N源气体和Al源气体; 和(d)在步骤(c)之后,供给N源气体,Ga源气体和Al源气体以形成第二半导体层。