Systems and methods for monitoring patient motion via capacitive position sensing

    公开(公告)号:US11612763B2

    公开(公告)日:2023-03-28

    申请号:US17092129

    申请日:2020-11-06

    摘要: Systems and methods are described for the monitoring of patient motion via the detection of changes in capacitance, as measured using a capacitance position sensing electrode array. The changes in capacitance may be processed to determine a corresponding positional offset, for example, using a calibration data set relating capacitance to offset for each electrode of the array. The detected positional offset may be employed to provide feedback to a surgeon or operator of a medical device, or directly to the medical device for the control thereof. A medical procedure may be interrupted when the positional offset is detected to exceed a threshold. Alternatively, the detected positional offset may be employed to manually or automatically reconfigure a medical device to compensate for the detected change in position. Various configurations of capacitive position sensing devices are disclosed, including embodiment in incorporating capacitive sensing electrodes with a mask or other support structure.

    System and method for manufacturing bolus for radiotherapy using a three-dimensional printer

    公开(公告)号:US11426602B2

    公开(公告)日:2022-08-30

    申请号:US16427444

    申请日:2019-05-31

    发明人: James Robar Shiqin Su

    摘要: Disclosed herein are systems, methods, and computer-readable storage devices for manufacturing patient-specific bolus for use in targeted radiotherapy treatment. Based on dose calculations without a bolus and based on three-dimensional scan data of a patient, the example system generates a model of a bolus for targeting radiotherapy treatment to a planning target volume or target region within the patient. The system can perform several iterations to generate a resulting model for the bolus. Then, the system can generate instructions for controlling a three-dimensional printer to generate the bolus that conforms to the patient's skin surface while also specifically targeting the planning target volume for the radiotherapy treatment. In this way, the amount of radiotherapy treatment administered to other tissue is reduced, while the costs, time, and human involvement in creating the bolus are significantly reduced.

    Systems and methods for beamforming using variable sampling

    公开(公告)号:US10989810B2

    公开(公告)日:2021-04-27

    申请号:US15544778

    申请日:2016-01-22

    摘要: The present disclosure provides systems and methods for ultrasound imaging using a modified variable sampling beamforming technique. Unlike conventional methods of variable sampling beamforming, in which in-phase and quadrature samples are obtained for each pixel location, in various example embodiments of the present disclosure, the pixel locations are quadrature-spaced such that for each 5 sample point, an adjacent sample point along an A-line is employed as the quadrature sample. The samples at each array element may be triggered according to the time of flight between a first pixel location and the location of the array element, such that successive samples, corresponding to successive pixel locations along the selected A-line, are obtained such that adjacent samples are spaced by a 10 time interval corresponding to a quarter of an odd number of wavelenghths of the beamformed transmit pulse, and such that only one sample is acquired per pixel.

    Systems and methods for monitoring patient motion via capacitive position sensing

    公开(公告)号:US10857390B2

    公开(公告)日:2020-12-08

    申请号:US15767325

    申请日:2016-10-13

    摘要: Systems and methods are described for the monitoring of patient motion via the detection of changes in capacitance, as measured using a capacitance position sensing electrode array. The changes in capacitance may be processed to determine a corresponding positional offset, for example, using a calibration data set relating capacitance to offset for each electrode of the array. The detected positional offset may be employed to provide feedback to a surgeon or operator of a medical device, or directly to the medical device for the control thereof. A medical procedure may be interrupted when the positional offset is detected to exceed a threshold. Alternatively, the detected positional offset may be employed to manually or automatically reconfigure a medical device to compensate for the detected change in position. Various configurations of capacitive position sensing devices are disclosed, including embodiment in incorporating capacitive sensing electrodes with a mask or other support structure.