Abstract:
An object of the present invention is to provide positive electrode active substance particles for non-aqueous electrolyte secondary batteries which are excellent in D.C. resistance characteristics under low-temperature conditions and a process for producing the provide positive electrode active substance particles, and a non-aqueous electrolyte secondary battery. The present invention relates to positive electrode active substance particles for non-aqueous electrolyte secondary batteries, comprising lithium composite oxide particles having a layered rock salt structure which are chemically reacted with at least Li and comprise at least one element selected from the group consisting of Ni, Co and Mn, and tungsten oxide particles, in which W is present in an amount of 0.1 to 4.0 mol % based on a total molar amount of Ni, Co and Mn in the lithium composite oxide particles, and the tungsten oxide particles have an average secondary particle diameter of 0.1 to 3.0 μm.
Abstract:
An object of the present invention is to provide a ferrite material that is excellent in temperature characteristic and DC superimposition characteristic. The present invention relates to Ni—Zn—Cu-based ferrite particles comprising 70 to 95% by weight of an Ni—Zn—Cu ferrite having a specific composition, 1 to 20% by weight of nickel oxide, 0 to 20% by weight of zinc oxide and 1 to 10% by weight of copper oxide, and a ferrite sintered ceramics obtained by sintering the ferrite particles.
Abstract:
The present invention relates to positive electrode active substance particles for non-aqueous electrolyte secondary batteries, comprising an oxide having a spinel structure and comprising at least Li and Mn as main components and an oxide comprising at least Li and Zr, in which the oxide comprising at least Li and Zr forms a mixed phase comprising two or more phases, and a content of the oxide comprising at least Li and Zr in the positive electrode active substance particles is 0.1 to 4% by weight. The present invention provides positive electrode active substance particles for non-aqueous electrolyte secondary batteries which are excellent in high-temperature characteristics and a process for producing the positive electrode active substance particles, and a non-aqueous electrolyte secondary battery.
Abstract:
A connector with a sheet has a housing mated with another connector, a terminal secured to the housing and contacting another terminal on the other connector, and a sheet affixed to the housing. The sheet has a laminate structure which includes a soft magnetic layer having real parts of complex relative permeability at 100 MHz of from 20 to 45, and a conductive/dielectric layer having an electrical resistance of from 0.5 to 20 Ω·cm.
Abstract:
A manufacturing method of a soft magnetic material has a step of preparing a metal magnetic particle containing iron as the main component, and a step of forming an insulating film surrounding the surface of the metal magnetic particle. The step of forming the insulating film includes a step of mixing and stirring the metal magnetic particle, aluminum alkoxide, silicon alkoxide, and phosphoric acid.
Abstract:
An amorphous carbon material for lithium-ion secondary battery negative electrode is capable of reducing capacity degradation due to repeated charge and discharge cycles, storage while being charged, or floating charge.A method for producing an amorphous carbon material for a negative electrode of a lithium-ion secondary battery includes the steps of: pulverizing and classifying a raw coke composition obtained from a heavy-oil composition undergone coking by delayed coking process to obtain powder of the raw coke composition, the raw coke composition having a H/C atomic ratio that is a ratio of hydrogen atoms H and carbon atoms C of 0.30 to 0.50 and having a micro-strength of 7 to 17 mass %; giving compressive stress and shear stress to the powder of the raw coke composition to obtain a carbonized composition precursor; and heating the carbonized composition precursor under an inert atmosphere at a temperature from 900° C. to 1,500° C. so that a size of a crystallite Lc(002) is in a range of 2 nm to 8 nm, the size being calculated from a (002) diffraction line obtained by X-ray wide-angle diffractometry.
Abstract:
Disclosed is a gas generant composition for a gas actuator used for activating a safety device, which contains (A) a nitrogen-containing organic compound, (B) a metal nitrate and/or a perchlorate, (C) a water-soluble polymer binder, and (D) a magnetic material. When compared with the conventional gas generant compositions, this gas generant composition is excellent in combustibility under low pressure conditions and reduced in CO gas generation during combustion. In this gas generant composition, (D) the magnetic material is preferably composed of a magnetic iron oxide. It is also preferable that (A) the nitrogen-containing organic compound is composed of one or more substances selected from nitroguanidine, guanidine nitrate, bitetrazole, azobistetrazole and 5-aminotetrazole; (B) the metal nitrate is composed of a metal salt selected from alkali metals and alkaline earth metals, while the perchlorate is composed of ammonium perchlorate or potassium perchlorate; (C) the water-soluble polymer binder is composed of a mixture of hydroxypropyl methylcellulose (HPMC) and a polyacrylamide; and (D) the magnetic iron oxide has a spinel crystal structure.
Abstract:
The present invention is a method for making highly stable magnetic alloy particles with high coercivities and high saturation magnetization comprising the steps of: a) providing a precursor selected from the group consisting of iron oxide hydroxide particles and iron oxide particles, wherein the precursor particle comprises from about 15 to about 45 atomic % Co based on amount of Fe present, b) reducing the precursor particles to magnetic alloy particles, c) passivating the magnetic alloy particles in an oxygen-containing atmosphere at a temperature between about 20.degree. and 100.degree. C., d) annealing the passivated magnetic alloy particles in an inert atmosphere at a temperature from about 120.degree. to about 450.degree. C., and e) further oxidizing the annealed magnetic alloy particles in an oxygen-containing atmosphere.
Abstract:
Disclosed herein are a process for producing acicular goethite particles comprising the step off: blowing an oxygen-containing gas into a ferrous salt reaction solution containing colloidal ferrous hydroxide or iron-containing colloidal precipitates which is obtained by reacting an aqueous ferrous salt solution with less than one equivalent of an aqueous alkali hydroxide solution, an aqueous alkali carbonate solution, or an aqueous alkali hydroxide and alkali carbonate solution based on Fe.sup.2+ in said aqueous ferrous salt solution, in the presence of ascorbic acid or a salt thereof so as to oxidize said colloidal ferrous hydroxide or iron-containing colloidal precipitates and to produce acicular goethite particles throught green rust; and a process for producing acicular magnetic iron oxide particles by reducing the acicular goethite particles obtained in the above process to produce acicular magnetite particles, and if necessary, oxidizing the acicular magnetite particles to obtain acicular maghemite particles, and if necessary, modifying the acicular magnetite or maghemite particles with Co or Co and Fe.sup.2+.
Abstract:
Cobalt coated, needle shaped berthollide iron oxide pigments are disclosed which have a core of the composition (Fe.sub.x.sup.2+, Fe.sub.2.sup.3+)O.sub.3+x wherein 0.3