摘要:
Apparatuses for and methods of deicing aircraft surfaces, engine inlets, windmill blades and other structures. Deicing apparatuses can comprise at least one standoff coupled with an actuator and a first region of an inner surface of a skin. A standoff can act as a moment arm and can create efficient, tailorable skin bending and acceleration, breaking an ice to skin bond. Integral as well as modular leading edges can can comprise deicing apparatuses.
摘要:
Apparatuses for and methods of deicing aircraft surfaces, engine inlets, windmill blades and other structures. Deicing apparatuses can comprise at least one standoff coupled with an actuator and a first region of an inner surface of a skin. A standoff can act as a moment arm and can create efficient, tailorable skin bending and acceleration, breaking an ice to skin bond. Integral as well as modular leading edges can comprise deicing apparatuses.
摘要:
Methods and systems are generally described that inhibit debris (such as ice) accretions and/or remove debris (such as ice) accretions from the exterior surface of an aircraft. In some embodiments, the invention is a system for an aircraft comprising: a component of the aircraft having a surface; a plurality of piezo-kinetic actuators each positioned proximate to a portion of the surface; and a control unit coupled to the plurality of actuators, the control unit configured to actuate one or more of the actuators at one or more frequencies; wherein the actuators are each configured to introduce a displacement of the surface in three dimensions to inhibit a formation of ice on at least the portion of the surface and to break up existing ice formations on at least the portion of the surface.
摘要:
The invention deals with a splitter nose delimiting the inlet of a low-pressure compressor of an axial turbine engine. The splitter nose comprises a separation surface with an upstream circular edge suitable for separating a flow entering into the turbine engine into a primary flow and a secondary flow, and a plasma de-icing device. The device comprises two annular layers of dielectric material (42; 44) partially forming the separation surface, an electrode forming the upstream edge, an electrode forming an outer wall of the splitter nose, an electrode forming an outer shroud which supports blades, an electrode delimiting the primary flow. The device generates plasmas (46; 48; 50) opposing the presence of ice on the partitions of the splitter nose. The invention also deals with a turbine engine with a splitter nose that is provided with a de-icing system downstream of the fan.
摘要:
A method includes calculating, using a processor, an impedance or forward and reflected power coefficients of a phased system including a plurality of actuators disposed on a structure; and activating the plurality of actuators disposed on the structure to produce shear stress via ultrasonic continuous wave activation to at least one of delaminate or weaken an adhesion strength of a contamination on the structure.
摘要:
A de-icing system for a hemispherical protective housing mounted on an aircraft structure is described. The system can include a series of piezo-electric devices mounted at the boundary of the housing. The piezo-electric devices generate ultrasonic frequencies and resonance of the protective housing is induced. One of the piezo-electric devices senses the frequency generated in the protective housing and acts as part of a feedback loop to maintain structural resonance of the protective housing. The structural resonance of the protective housing prevents the build-up of ice. Additionally, higher power resonances can be generated to remove ice already built up on the protective housing. The system also enables detection of ice build-up on the protective housing by monitoring any change in the frequency required to maintain structural resonance of the protective housing.
摘要:
The current invention is directed to a self-contained electro-expulsive actuator assembly capable of being attached and operating external to an object, and methods of providing an electro-expulsive force external to an object. During operation the deformation or flexing of the electro-expulsive actuator causes deformation of an integral outer skin which is overlaid over the outer surface of the underlying structure, thereby causing unwanted build-up of residues on the outer skin of the actuator assembly to be expelled.
摘要:
A lip assembly for an air inlet of a turbojet engine nacelle includes an inner surface, an external surface. A portion of the external surface is covered by an ice-repellent coating. In particular, the ice-repellent coating includes a piezoelectric actuator which vibrates the external surface and is combined into a matrix of the ice-repellent coating.
摘要:
Methods and systems are generally described that inhibit debris (such as ice) accretions and/or remove debris (such as ice) accretions from the exterior surface of an aircraft. In some embodiments, the invention is a system for an aircraft comprising: a component of the aircraft having a surface; a plurality of piezo-kinetic actuators each positioned proximate to a portion of the surface; and a control unit coupled to the plurality of actuators, the control unit configured to actuate one or more of the actuators at one or more frequencies between about 1 Hz and about 1 kHz; wherein the actuators are each configured to introduce a displacement of the surface in three dimensions to inhibit a formation of ice on at least the portion of the surface and to break up existing ice formations on at least the portion of the surface.
摘要:
A cladding (22) for a wall (12) includes a barrier layer (24) that can be deformed by the action of a polymer actuator (14). According to the invention, a contact surface (A) of the cladding lies completely against the wall, at least in the non-deformed state, stabilizing the intrinsically elastic wall cladding. For example, the wall cladding can be fixed to the wall (12) in the form of lamellae (22), at respective points, in such a way that the activation of the polymer actuator (14) causes the lamellae (22) to bend, thus permitting, for example, a layer (25) of ice to be detached from the cladding. Alternatively, the cladding can also be configured from a membrane actuator, which is fixed at points, or by its entire surface to the wall (12).