Abstract:
A method of forming a vacuum insulated refrigerator cabinet, the method comprising providing first and second sheets of material. The first sheet of material is thermoformed over a first forming tool forming a first intermediate structure. The first intermediate structure is then thermoformed over a second forming mold to create a second intermediate structure. The second sheet of material is then sealing connected with the second intermediate structure forming an annular space. A vacuum is created in the annular space creating a vacuum insulated cabinet.
Abstract:
A method of forming a vacuum insulated refrigerator cabinet, the method comprising providing first and second sheets of material. The first sheet of material is thermoformed over a first forming tool forming a first intermediate structure. The first intermediate structure is then thermoformed over a second forming mold to create a second intermediate structure. The second sheet of material is then sealing connected with the second intermediate structure forming an annular space. A vacuum is created in the annular space creating a vacuum insulated cabinet.
Abstract:
A method of forming a vacuum insulated refrigerator cabinet, the method comprising providing first and second sheets of material. The first sheet of material is thermoformed over a first forming tool forming a first intermediate structure. The first intermediate structure is then thermoformed over a second forming mold to create a second intermediate structure. The second sheet of material is then sealing connected with the second intermediate structure forming an annular space. A vacuum is created in the annular space creating a vacuum insulated cabinet.
Abstract:
A rectangular double walled cryogenic freezer has a vacuum space filled with alternating layers of flexible insulating material and a reflective material. A support structure is also positioned in the vacuum space. The support structure is open-celled and provides structural support for the freezer walls to prevent wall deformation when a vacuum is drawn. The support structure may be open-cell rigid foam or a support grid sandwiched between two layers of rigid insulation material.
Abstract:
A method of easily deforming a plate-shape vacuum insulation material and producing a smaller but highly effective insulation container, comprising steps of inserting a thermoplastic open-celled rigid foam as a core material into a packet composed of gas barrier film, evacuating and sealing the packet so as to produce a vacuum insulation material, heating and softening the vacuum insulation material so as to deform the same, and cooling the vacuum insulation material so as to cure the same, and also a freezing and refrigerating container having Peliter element.
Abstract:
An evacuated panel is provided for thermal insulation of a body (3, 4) having non-planar surfaces, the panel having two main faces and comprising a flexible envelope (1), made of one or more barrier sheets, and a filling material formed of at least two boards (2; 2null) of an open cell polymeric foam, the boards lying one over the other, and each board having a thickness between about 2 and 8 mm.
Abstract:
A heat insulation box body includes inner and outer boxes forming a shell of the heat insulation box body and triangular structural materials inserted in the shell held by close-contact by means of a vacuum. Further, at the time of disassembling the heat insulation box body after scrapping, a shell surface is cut and air is introduced into the inside of the shell to return the state of the shell to an atmospheric pressure state and then respective members are separated from each other.
Abstract:
A heat insulation box body includes inner and outer boxes forming a shell of the heat insulation box body and triangular structural materials inserted in the shell held by close-contact by means of a vacuum. Further, at the time of disassembling the heat insulation box body after scrapping, a shell surface is cut and air is introduced into the inside of the shell to return the state of the shell to an atmospheric pressure state and then respective members are separated from each other.
Abstract:
A heat insulation box body includes inner and outer boxes forming a shell of the heat insulation box body and triangular structural materials inserted in the shell held by close-contact by means of a vacuum. Further, at the time of disassembling the heat insulation box body after scrapping, a shell surface is cut and air is introduced into the inside of the shell to return the state of the shell to an atmospheric pressure state and then respective members are separated from each other.
Abstract:
An insulating vacuum panel comprising a microporous, open cell silica foam or a precipitated silica insulating support member enclosed within a sealed, flexible polymeric envelope, the envelope comprising a heat-sealable barrier film comprising a multiple layer laminate containing at least one polyethylene terephthalate layer and at least two barrier layers selected from the group consisting of polyvinylidene chloride, polyvinyl alcohol, polyamide, polyolefin and aluminum foil, or a biaxially oriented liquid crystal barrier film which minimizes permeation of gas and liquid through the barrier film, the panel having an R value per inch of at least about 20 wherein the enclosed insulated vacuum panel is useful as insulation to maintain an essentially constant temperature in a closed structure, a system for storing and transporting temperature-sensitive materials wherein the insulated vacuum panels are employed to provide and maintain a constant temperature in the system, a method for manufacturing the insulating vacuum panel, and a system for storing and transporting temperature-sensitive materials are described.