Abstract:
A system and method are disclosed for performing ranging operations (700) between two or more wireless devices (STA1 and STA2). For some embodiments, the ranging operation allows each of a pair of ranging devices to estimate timing errors associated with measuring the time of arrival (TOA) of received signals, and to remove such timing errors from the measured TOA values. TOA and time of departure (TOD) information may also be exchanged between the devices using measurement action frames defined by IEEE 802.11v standards. In addition, an iterative process (800) is disclosed that allows a sequence of measurement action frames exchanged between the ranging devices to refine the timing errors and thus also refine the round trip time (RTT) value of signals exchanged between the devices.
Abstract:
In a two-way ranging scheme where a first apparatus (e.g., device) determines a distance to a second apparatus (e.g., device), specified packets are sent between these apparatuses at specified times to facilitate the determination of the distance. In some aspects, these packets may be defined and/or sent in a manner that enables the apparatuses to detect a leading edge of a received packet with a high degree of accuracy. For example, an apparatus may transmit a packet a defined period of time after transmitting or receiving another packet. In addition, a packet may comprise a defined symbol sequence that is used by an apparatus that receives the packet to identify a leading edge of the packet.
Abstract:
A method for transmission to a receiver of a geographic coordinate λ of a transmitter positioned in a spherical coordinate system λ, φ, at least a portion of one hemisphere of the Earth's sphere being divided into N sections each bounded by a minimum φ and a maximum φ, each section being subdivided into X cells each bounded by a minimum λ and a maximum λ, X varying depending on the section, includes at least the following steps: partitioning all of the latitude sections into M+1 classes, M sections being interspersed between two sections of the same class; transmitting, in one and the same message, the coordinate λ of the transmitter referenced relative to the cell in which the transmitter is located and the class of the latitude section in which the transmitter is located, the range of the receiver being at the most equal to the width of a cell along the axis of variation of the coordinate λ.
Abstract:
The RF system for preventing hunting accidents comprising RF interrogator mounted on the firearm or hunter's hat and RF transponder attached to hunter's hat, wherein directional pattern of antennas of the hat-mounted interrogator is directed along the line of view of the hunter so matching with sightline of hunter's rifle; and RF transponder, which, to cover directional pattern of 360 arc degrees in azimuth, contains a number of RF transceiver evenly attached to the hunter's hat in horizontal plane and connected to the single electronic unit. The system provides alert information about “friendly targets” that could be under fire, such as other hunters or persons equipped with said transponder; and if they are, the system develops alert signal: “Do not shoot”.
Abstract:
Provided are a distance measuring device and a distance measuring method which can easily distinguish a reflected signal from a desired tag from an unnecessary wave so as to improve the distance measuring accuracy even when IR-UWB is used for measuring a distance. The method uses a reader ID indicated by a code string formed by P bits (P is a natural number) for identifying a base station and a tag ID indicated by a code string formed by Q bits (Q is a natural number) for identifying a radio terminal. The method generates a unique word containing P pulses, each of which is ON/OFF-modulated depending on whether each of P bits indicating the reader ID is 1 or 0. The method generates a frame containing 2 M unique words and a burst containing Q frames. The method further outputs a transmission signal containing a plurality of bursts. A radio terminal Amplitude Shift Keying (ASK)—modulates the transmission signal depending on whether each of the Q bits indicating the tag ID is 1 or 0. The ASK-modulated signal is sampling-received at timings of different phases by 1/M (M is an integer not smaller than 1) of the transmission clock cycle.
Abstract:
A method for performing ranging is disclosed. The method for performing ranging in a wireless communication system which simultaneously supports a legacy system and a new system includes a method for additionally allocating a ranging channel to a zone other than a legacy zone and a method for re-using a legacy ranging channel within the legacy zone. When the legacy ranging channel is re-used, ranging codes may be shared by a legacy mobile station and a new system mobile station or may be separated on a ranging code domain. Limited radio resources can be effectively employed by re-using the legacy ranging channel.
Abstract:
A method for validating received positional data in vehicle surveillance applications wherein vehicles transmit positional data indicating their own position to surrounding vehicles. A a radio direction finding antenna arrangement of a receiving unit receives a signal carrying positional data indicating an alleged position of a vehicle, transmitted from a radio source. The bearing from the receiving unit to the radio source is estimated utilizing the radio direction finding antenna arrangement and the received signal. The distance between the receiving unit and the radio source is estimated based on the time of flight for a signal travelling there between at known speed. An estimated position of the radio source is calculated based on the estimated bearing and the estimated distance. A deviation value indicating the deviation/coincidence between the alleged position of a vehicle is determined according to the received positional data and the estimated position of the radio source.
Abstract:
The present invention includes a method for identifying a facility on the ground or at sea, the method being implemented on an airborne responder linked to at least two antennas, the method including a step of choosing a first transmission antenna and a step of transmitting an interrogation message from the chosen antenna. The method further includes testing whether a response has been received by the responder, and, if at least one response signal is received by at least one of the antennas, choosing a transmission antenna as a function of the response signal or signals received. If no response message is received, a different transmission antenna is chosen from the antenna that transmitted the last interrogation message. The method is repeated from the step of transmitting the interrogation message.
Abstract:
A method for mapping an operating parameter in a coverage area of a wireless network includes obtaining parameter measurements for an operating parameter associated with mobile stations operating in a select portion of a network coverage area for a wireless network, the network coverage area formed by base stations defining cellular coverage areas, the select portion formed by at least one base station, each at least one base station including multiple sector antennas, each sector antenna defining a sector coverage area within the cellular coverage area; and, for each obtained parameter measurement, estimating an instant geographic location of the mobile station in relation to the at least one base station serving the mobile station, each instant geographic location based on a round trip measurement and a signal strength measurement associated with the mobile station, each round trip measurement associated with the serving base station.
Abstract:
The present invention provides systems and methods for communication between ultra-wideband (UWB) devices. In general, the UWB device may characterize the attenuation, and other characteristics of the communication environment. Using these characteristics the UWB device can adapt various communication parameters to improve the communication quality. The UWB device may use these characteristics to establish zones and sectors for communication with other UWB devices. Based on this zone and sector assignment the UWB device may select communication parameters for communication with other UWB devices. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.