Abstract:
A multiple layer structure comprising a pair of spaced-apart crystalline layers of different materials with an intermediate crystalline layer between and in contact with each of the pair of crystalline layers, the intermediate crystalline layer providing one of the crystalline layers of the pair with a stronger out-of-plane preferred growth orientation than if each of the pair of crystalline layers are in overlying contact. Disclosed and preferred embodiments include perpendicular magnetic recording media comprising the multiple layer structure as an intermediate layer structure beneath a perpendicular magnetic recording layer for strengthening a preferred out-of-plane growth orientation of the latter.
Abstract:
An anti-ferromagnetically coupled, granular-continuous (“AFC-GC”) magnetic recording medium having increased thermal stability, writability, and signal-to-medium noise ratio (“SMNR”), comprising a layer stack including, in sequence from a surface of a non-magnetic substrate: (a) a continuous ferromagnetic stabilizing layer; (b) a non-magnetic spacer layer; and (c) a granular ferromagnetic recording layer; wherein: (i) the continuous ferromagnetic stabilizing and granular ferromagnetic recording layers are anti-ferromagnetically coupled across the non-magnetic spacer layer, the amount of anti-ferromagnetic coupling preselected to ensure magnetic relaxation after writing; (ii) lateral interactions in the granular, ferromagnetic recording layer are substantially completely eliminated or suppressed; and (iii) the exchange coupling strength in the continuous, ferromagnetic stabilizing layer is preselected to be slightly larger than the strength of the anti-ferromagnetic coupling provided by the non-magnetic spacer layer to thereby enhance thermal stability of the recording bits.
Abstract:
A perpendicular magnetic recording medium includes: a substrate; at least one underlayer formed above the substrate; and a perpendicular magnetic recording layer formed above the at least one underlayer, an easy magnetization axis of the perpendicular magnetic recording layer being oriented perpendicular to the substrate, the perpendicular magnetic recording layer including magnetic crystal particles and grain boundaries surrounding the magnetic crystal particles, wherein the grain boundaries contain an oxide of silicon and at least one element selected from the group consisting of Li, Na, K, Rb, Cs, Ca, Sr, and Ba, and the ratio of a total amount of substance of Si, Li, Na, K, Rb, Cs, Ca, Sr, and Ba in the perpendicular magnetic recording layer is no less than 1 mol % and no more than 20 mol %.
Abstract:
To make possible high density recording by making the structure of the perpendicular magnetic recording layer finer. A perpendicular magnetic recording medium 10 includes at least a nonmagnetic under layer 2, a perpendicular magnetic layer 3, and a protective layer which are stacked on a nonmagnetic substrate 1, wherein the perpendicular magnetic layer includes ferromagnetic crystal grains and nonmagnetic crystal grain boundary regions, wherein the crystal grain boundary region includes at least two kinds of oxide.
Abstract:
A laminated magnetic recording medium comprising two magnetic layers that are substantially decoupled. The upper magnetic layer is preferably a cobalt alloy that includes tantalum. The tantalum in the upper magnetic layer provides the advantage of improving media SNR with good media stability.
Abstract:
A perpendicular magnetic recording medium includes a metamagnetic antiferromagnetically-coupled (AFC) layer between the recording layer (RL) and the soft magnetically permeable underlayer (SUL). The metamagnetic AFC layer has essentially no net magnetic moment in the absence of a magnetic field, but is highly ferromagnetic in the presence of a magnetic field above a threshold field. Thus the metamagnetic AFC layer does not contribute to the readback signal during reading, but channels the write field to the SUL during writing because the threshold field is selected to be below the write field. An exchange-break layer EBL is located between the metamagnetic AFC layer and the RL. The metamagnetic AFC layer contains films with a crystalline structure suitable as a growth template for the EBL and RL, so the metamagnetic AFC layer also functions as part of an “effective EBL”, thereby allowing the actual EBL to be made as thin as possible.
Abstract:
An embodiment of the invention is a laminated magnetic recording medium comprising two magnetic layers that are substantially decoupled. The lower magnetic layer comprises two sublayers. The upper magnetic sublayer is preferably a cobalt alloy having lower chromium and higher boron content than the lower magnetic sublayer. The upper sublayer composition is selected to have higher coercivity (Hc), narrower PW50 and higher resolution. The lower sublayer composition is selected for higher SNR, thermal stability and better overwrite. The laminated structure can also be used in an embodiment which has a slave magnetic layer separated from the lower magnetic layer by an AFC spacer.
Abstract:
The Hr and SNR of a magnetic recording medium are increased and the signal pulse narrowed by employing a tri-layer underlayer structure containing Cr or a Cr alloy wherein the second underlayer contains Cr and B, the first underlayer preferably contains substantially pure Cr, and the third underlayer preferably contains a ternary alloy of Cr.
Abstract:
A sputter target, where the sputter target is comprised of cobalt (Co), platinum (Pt), a single-component oxide or a multi-component oxide, and an elemental metal additive. The elemental metal additive has a reduction potential of greater than −0.03 electron volts, and is substantially insoluble with cobalt (Co) at room temperature. The elemental metal additive is copper (Cu), silver (Ag), or gold (Au), and the sputter target is further comprised of chromium (Cr) and/or boron (B). The sputter target is comprised of between 2 atomic % and 10 atomic % copper (Cu), silver (Ag), or gold (Au) or other elemental metal additive. Accordingly, the enhanced sputter target provides significant improvements in thermal stability and SNR, through enhancements to magnetocrystalline anisotropy and increased grain-to-grain segregation.
Abstract:
A perpendicular magnetic recording disk has an antiferromagnetically-coupled (AFC) recording layer (RL) comprised of lower and upper ferromagnetic layers, each having a hexagonal-close-packed (hcp) crystalline structure and perpendicular magnetic anisotropy, separated by an antiferromagnetically (AF) coupling layer, wherein the lower ferromagnetic layer (LFM) has substantially higher magnetic permeability than the upper ferromagnetic layer (UFM). The AFC RL is located on an actual exchange break layer (EBL) that separates the AFC RL from the disk's soft magnetic underlayer (SUL). The LFM functions as part of an “effective” exchange break layer (EBL) that also includes the actual EBL and the AF-coupling layer, thereby allowing the actual EBL to be made as thin as possible. The hcp LFM promotes the growth of the hcp UFM in the same way the actual EBL does so that its thickness contributes to the thickness necessary to grow the hcp UFM. The effective EBL appears to be magnetically “thin” during the write process and magnetically “thick” during the readback process.