Abstract:
A microwave tube includes an electron gun that emits an electron beam; a magnetic circuit that focuses the electron beam emitted from the electron gun; a collector that captures the electron beam that has passed through the magnetic circuit; a high frequency circuit that is spirally arranged around the electron beam focused by the magnetic circuit and that transmits a high frequency; and a magnetic body part arranged around the electron gun so as to be movable in an emission direction of the electron beam. A high frequency output from the high frequency circuit is controlled to be constant by moving the magnetic body part in an emission direction of the electron beam.
Abstract:
The present invention provides a multi-beam klystron apparatus. In the above-described multi-beam klystron apparatus, the magnetic field generating element of the electron-gun-unit-side magnetic field generating unit is disposed around the electron gun unit, and a plurality of magnetic gaps are provided in the inner peripheral surface of the magnetic pole, which covers the magnetic field generating element, in the direction of travel of the electron beams. Therefore, lines of magnetic force, which are parallel to the center axis of the radio-frequency interaction unit, can be generated. Thus, even the electron beam, which is generated from the location apart from the center axis of the electron gun unit, can be guided to the radio-frequency interaction unit in the same manner as in the location at the canter axis of the electron gun unit.
Abstract:
Axially symmetric magnetic fields are provided about the longitudinal axis of each beam of a multi-beam electron beam device. The magnetic field symmetry is independent of beam voltage, beam current and applied magnetic field strength. A flux equalizer assembly is disposed between the cathodes and the anodes and near the cathodes of a multi-beam electron beam device. The assembly includes a ferromagnetic flux plate completely contained within the magnetic focusing circuit of the device. The flux plate includes apertures for each beam of the multi-beam device. A flux equalization gap or gaps are disposed in the flux plate to provide a perturbation in the magnetic field in the flux plate which counters the asymmetry induced by the off-axis position of the beam. The gaps may be implemented in a number of ways all of which have the effect of producing a locally continuously varying reluctance that locally counters the magnetic field asymmetry. The flux equalizer assembly prevents or substantially reduces beam twist and maintains all of the electron beams of the device as linear beams.
Abstract:
Axially symmetric magnetic fields are provided about the longitudinal axis of each beam of a multi-beam electron beam device. The magnetic field symmetry is independent of beam voltage, beam current and applied magnetic field strength. A flux equalizer assembly is disposed between the cathodes and the anodes and near the cathodes of a multi-beam electron beam device. The assembly includes a ferromagnetic flux plate completely contained within the magnetic focusing circuit of the device. The flux plate includes apertures for each beam of the multi-beam device. A flux equalization gap or gaps are disposed in the flux plate to provide a perturbation in the magnetic field in the flux plate which counters the asymmetry induced by the off-axis position of the beam. The gaps may be implemented in a number of ways all of which have the effect of producing a locally continuously varying reluctance that locally counters the magnetic field asymmetry. The flux equalizer assembly prevents or substantially reduces beam twist and maintains all of the electron beams of the device as linear beams.
Abstract:
There is provided an impregnated-type cathode substrate comprising a large particle diameter low porosity region and a small particle diameter high porosity region which is provided in a side of an electron emission surface of the large particle diameter low porosity region and has an average particle diameter smaller than an average particle diameter of the large particle diameter low pore region and a porosity higher than a porosity of the large particle diameter low porosity region, the impregnated-type cathode being impregnated with an electron emission substance.
Abstract:
In an output resonant cavity used with a linear electron beam tube such as an IOT, magnetic material is mounted on walls of the cavity and defines annular channels within which coils are located to provide focusing of an electron beam travelling along the axis of a tube located in apertures in the cavity walls. An inner rim locates the electron beam tube with respect to the cavity.
Abstract:
A device for generating and guiding an electric discharge current including a first electrode, second electrode and a material arranged between the first and second electrode. The device uses a laser for generating photons having energies equal to the energy between two excited electronic states of the material. The photons fill a region of the material from the first electrode through the material to the second electrode ionizing the region of the material between the first and second electrodes. A voltage generating unit connected to the first and second electrodes applies a voltage between the first and second electrodes thereby generating the electric discharge which follows an ionized path in the region between the first and second electrodes.
Abstract:
A permanent-magnet-focused linear-beam high power millimeter-wave tube is externally adjustable for optimum electron beam optics during initial tube operation. The adjustment is made possible by providing an enlarged cavity within the cathode polepiece within which is housed a confined-flow magnetically-focused electron gun, and a cylindrical insert of magnetic material axially symmetrically disposed about the gun and in spaced relationship to and adjacent the gun insulator envelope. The insert may comprise iron or a radially magnetized permanent magnet, either alone or in combination, and more than one insert of magnetic material may be concentrically employed. In this manner, and by movement of the insert axially within the cavity toward and away from the gun, a finely controllable smooth adjustment of the beam diameter in the beam-microwave interaction region of the tube is effected over a wide range during initial operation. Substantially only the magnetic field in the vicinity of the gun is affected, and essentially no scalloping degradation of the beam in the interaction region is observed.