Abstract:
An RF filter assembly comprising a substrate, an RF waveguide filter mounted on the substrate and a pair of alignment/mounting/RF signal transmission pins extending from respective apertures in the substrate into respective through-holes in the RF filter. In one embodiment, the RF waveguide filter is comprised of first and second blocks of dielectric material coupled together in an abutting side-by-side relationship and the pair of through-holes are defined in the first and second blocks respectively. In one embodiment, respective RF signal transmission pads defined on the respective first and second blocks of dielectric material are abutted against respective RF signal transmission pads defined on the substrate and interconnected by an RF signal transmission line in the interior of the substrate for transmitting the RF signal between the first and second blocks of dielectric material.
Abstract:
Various multi-mode resonant filters including a housing having a cavity, are provided. The multi-mode resonant filters include a Dielectric Resonant (DR) element received in the cavity of the housing, and a plurality of transmission lines for connecting a point on one of a first axis, a second axis, and a third axis with a point on another axis. The first axis, the second axis, and the third axis are orthogonal to each other with respect to a center of the DR element.
Abstract:
A bandpass filter has a combline structure having a plurality of cascaded nodes. A plurality of nodes in the filter are connected both to resonant elements (a.k.a. resonators) and non-resonant elements (including elements having inductances and/or capacitances that do not resonate in a predetermined frequency band of interest). The resonant frequencies of the resonant elements may be adjusted, in order to adjust the location of the center frequency and/or the width of the passband of the filter. The characteristics of the resonant and non-resonant elements are selected such that the poles of the filter, when plotted on the complex plane, move substantially along the imaginary axis when the resonant frequencies are adjusted, without substantial movement along the real axis. The resulting bandpass filter has substantially constant losses and substantially constant absolute selectivity over a relatively wide range of bandwidths.
Abstract:
A high frequency electrode includes a main conductor and at least two sub-conductors formed along a side of the main conductor. The sub-conductors are formed so that a sub-conductor thereof positioned nearer to the outside has a smaller width.
Abstract:
A highly compact band pass filter that has excellent mechanical strength is disclosed. A band pass filter according to the present invention employs a dielectric block of substantially rectangular prismatic shape constituted of a first portion lying between a first cross-section of the dielectric block and a second cross-section of the dielectric block substantially parallel to the first cross-section and second and third portions divided by the first portion and metal plates formed on the surfaces of the dielectric block. The first portion of the dielectric block and the metal plates formed thereon are enabled to act as an evanescent waveguide. The second portion of the dielectric block and the metal plates formed thereon are enabled to act as a first resonator. The third portion of the dielectric block and the metal plates formed thereon are enabled to act as a second resonator. The metal plates include a capacitive stub formed on a first surface of the dielectric block which is substantially perpendicular to the cross-sections.
Abstract:
In a dielectric resonator device, electrodes having electrode non-formation sections opposite to each other and having substantially the same shape and size are formed on the opposite main faces of a dielectric plate. The portion of the dielectric plate sandwiched between the electrode non-formation sections opposite to each other is used as a dielectric resonator section. Further, the characteristics of the dielectric resonator device are adjusted by attaching dielectric chips inside of the dielectric resonator section or between adjacent dielectric resonator sections.
Abstract:
A bandpass filter for the transmission of signals within a predetermined frequency bandwidth having a center frequency, which provides for substantial attenuation of the harmonic components of the center frequency of the filter. The bandpass filter includes at least one resonator comprising a strip conductor and a ground conductor formed on the surface of a dielectric substrate. The strip conductor is capacitively coupled to the ground conductor so as to substantially transmit the harmonic components of the center frequency of the filter to ground.
Abstract:
A semiconductor mounting and matching assembly capable of performing over a frequency range to 20 GHz and higher comprising a coaxial transmission line having a first portion with a first end for receiving radio-frequency signals and providing an input impedance and a second portion with a second signal output end providing a termination characteristic impedance. A semiconductor diode which is hermetically sealed within and removable with the second portion is mounted at the second end and has a load resistance terminating the transmission line. The transmission line has a plurality of sections for providing elements of a network which transforms the input impedance and matches the termination characteristic impedance of the second end of the transmission line to the load resistance of the semiconductor device. The elements of the network are provided by the configurations and discontinuities of the sections of the transmission line and the capacitive and inductive properties provided by the semiconductor device, whereby the network incorporates therein the parasitic reaction elements of the semiconductor device so that said assembly transmits radio-frequency signals from its input end to the semiconductor device at its output end with low reflection and attenuation over a wide-band of frequencies.