Abstract:
The present invention relates to a method for realizing a short-circuited slot-line on a multilayer substrate comprising at least a first conductive layer, a dielectric layer and a second conductive layer, the method comprising the following steps: etching in the first conductive layer a slot-line having an electrical length L, etching in the first conductive layer, around the slot-line, a first portion of a first band having an electrical length L1≦L, etching in the first conductive layer, around the slot-line, a second portion of said first band, having an electrical length L2≦L, etching in the second conductive layer, a second band in the form of a loop having an electrical length L3, one end of the second band being connected to the first part of the first band and the other end of the second band being connected to the second part of the first band so as to form a conductive loop. The method is used notably to realize isolating slot-lines and slot-antennae.
Abstract:
An electromagnetic wave propagation device includes multiple planar propagation media each formed by laminating at least one planar conductor and at least one planar dielectric, multiple transceivers for transmitting and receiving information among electronic apparatuses, and a first interface for transmitting and receiving the electromagnetic wave between the transceivers and the planar propagation media. Planar dielectric spacers are provided for isolating the multiple planar propagation media from one another. The planar propagation medium is disposed to have an overlapped part with at least the other of the planar propagation media so that an obverse face of the medium and a reverse face of the other medium are at least partially overlapped with each other. The planar conductor is provided with an electromagnetic wave linking unit at the overlapped part that transmits and receives the electromagnetic wave between the planar propagation media.
Abstract:
The present invention is related to a device for generating waveguide modes for use in a feed horn of a satellite antenna system, said waveguide modes comprising at least one excitation mode of higher order than the fundamental mode, said device comprising a waveguide containing a first waveguide section with at least three longitudinal slots extending in the inner side of said waveguide, characterised in that said waveguide contains a second waveguide section with at least three longitudinal slots extending in said inner side of said waveguide.
Abstract:
Methods and apparatus are disclosed for wirelessly communicating among integrated circuits and/or functional modules within the integrated circuits. A semiconductor device fabrication operation uses a predetermined sequence of photographic and/or chemical processing steps to form one or more functional modules onto a semiconductor substrate. The functional modules are coupled to an integrated waveguide that is formed onto the semiconductor substrate and/or attached thereto to form an integrated circuit. The functional modules communicate with each other as well as to other integrated circuits using a multiple access transmission scheme via the integrated waveguide. One or more integrated circuits may be coupled to an integrated circuit carrier to form Multichip Module. The Multichip Module may be coupled to a semiconductor package to form a packaged integrated circuit.
Abstract:
An electro-magnetically shielded slot-transmission line is formed by metallizing the opposing sides of a slot cut through a dielectric substrate. A ground plane is deposited on the bottom of the substrate. Conductive vias through the substrate and that contact the ground plane are located on both sides of the metallized slot surfaces. Conductive pads on the upper surface and which contact the vias provide additional shielding.
Abstract:
A high-frequency circuit device includes a dielectric substrate. A planar conductor is provided on each of top and bottom surfaces of the dielectric substrate and a slot line is formed on the top surface. Also, undesired-wave propagation preventing circuits, each including multistage band-elimination filters, are provided on the top surface of the dielectric substrate, with the slot line therebetween. Each of the band-elimination filters includes two conductive lines and a resonator which is provided at a portion of one of the conductive lines and which includes two spiral lines. Accordingly, propagation of an undesired wave of the band whose center is the resonance frequency of the resonator can be prevented.
Abstract:
An electromagnetic wave propagation device includes multiple planar propagation media each formed by laminating at least one planar conductor and at least one planar dielectric, multiple transceivers for transmitting and receiving information among electronic apparatuses, and a first interface for transmitting and receiving the electromagnetic wave between the transceivers and the planar propagation media. Planar dielectric spacers are provided for isolating the multiple planar propagation media from one another. The planar propagation medium is disposed to have an overlapped part with at least the other of the planar propagation media so that an obverse face of the medium and a reverse face of the other medium are at least partially overlapped with each other. The planar conductor is provided with an electromagnetic wave linking unit at the overlapped part that transmits and receives the electromagnetic wave between the planar propagation media.
Abstract:
A slot transmission line patch connector, capable of bridging one or more slot transmission lines is comprised of an elongated dielectric connector body. The dielectric connector body is formed to have one or more slot transmission lines. Each transmission line formed in the dielectric body has first and second ends, each of which mates with corresponding first and second slot transmission lines. Alternate embodiments contemplate a dielectric body to which is attached one or more slot transmission line substrates, each of which supports one or more slot transmission lines. Each of the slot transmission line substrates provide one or more slot transmission lines that each bridge or “patch” together two, separate slot transmission lines together.
Abstract:
A conductive structure having a conductor for carrying a signal at a one or more operating frequencies of the structure, the conductor comprising: at least two electrically conductive strips spaced apart by a dielectric and arranged in parallel to extend from a first node to a second node, the conductive strips being interconnected between the nodes by at least one inter-strip electrically conductive connection through the dielectric; the maximum physical dimension of the or each inter-strip connection and the maximum physical separation of potentially successive inter-strip connections being equal to or less than one quarter of the free space wavelength corresponding to the minimum operating frequency of the structure.