摘要:
One of the swing shafts 32 of the nozzle vanes 31 is selected so as to operate as swing drive shaft 33 that projects to the outside. As the swing drive shaft 33 is driven to revolve, all the nozzle vanes 31 are driven to turn by a same angle by way of the driving lever 21 and the coupling ring 18 linked to it. Therefore, it is only the swing drive shaft 33 that projects to the outside, the projecting part can be sealed in a simple and reliable manner to improve the sealing effect and the durability of the variable geometry turbocharger. Additionally, since the rotary motion of the swing drive shaft 33 is directly used to driven the nozzle vanes 31 to swing, the mechanism for transmitting the driving force is simplified.
摘要:
In a nozzle vane driving control apparatus of a variable nozzle turbocharger including an actuator for carrying out a driving operation for opening and closing a nozzle vane of a variable nozzle and an ECU for controlling the opening degree of the nozzle vane which is obtained by the actuator, an actuator cover for covering a pinion and reduction gears by interposing a base provided integrally with a motor case portion therebetween, a unit body accommodating each of control boards, a position sensor for detecting the rotating position of an output shaft and a connector having a terminal connecting a motor and each of the control boards, and a unit cover for covering the unit body are removably fastened and fixed with a bolt and are thus integrated with each other.
摘要:
A variable geometry turbine has an annular inlet passageway defined between a radial wall of a moveable wall member and a facing wall of the turbine housing. The moveable wall member is mounted within an annular cavity provided within the housing and having inner and outer annular surfaces. An annular seal is disposed between an annular flange of the moveable wall member and the adjacent inner or outer annular surface of the cavity. One or more inlet bypass passages are provided in the annular flange or said adjacent cavity surface, such that the annular seal and bypass passageways move axially relative to one another as the moveable wall member moves. The annular seal and the or each bypass passage are axially located such as the annular wall member approaches the facing wall of the housing the or each bypass passage permits the flow of exhaust gas through said cavity to the turbine wheel thereby bypassing the annular inlet passageway.
摘要:
An aircraft control system includes a propeller governor in which a stepper motor is used to apply a compression force on a speeder spring, and a turbocharger in which a stepper motor is used to actuate a needle valve associated with a diaphragm cell. An electronic control unit may be used to control the stepper motor in the propeller governor and the stepper motor in the turbocharger. The integration of the propeller governor and the turbocharger into a single control system decreases the number of individual adjustments that must be performed manually by the pilot.
摘要:
An actuator composed of: a) a solenoid (1) with a ferromagnetic nucleus (2) which slides inside it and is combined with a rod (3) appropriate for interacting with the turbocharger's (5) pilot point (4) and provided with a sensing system (7) of the position of the ferromagnetic nucleus (2) in the solenoid (1); b) and an electronic circuit which:nullon the way in receives at least the signal from the engine's electronic control unit and the feedback signal, connected to the position of the ferromagnetic nucleus (2) of the solenoid (1);nullon the way out it distributes the electric current, connected to the said entry signals, with which it feeds the same solenoid (1).
摘要:
A method of controlling an internal combustion engine when the engine is operating in an engine braking mode is provided. The engine operates in the engine braking mode and an exhaust valve for the cylinder is prematurely opened to dissipate power. The method includes controlling airflow to at least one cylinder based on a comparison of a desired mass airflow rate and an actual mass airflow rate such that the actual mass airflow rate tracks the desired mass airflow rate.
摘要:
A control system of this invention for use with a variable geometry turbocharger is designed to enable turbocharger control based solely on engine speed. The control system takes measured engine speed and sends the same to an engine control unit (ECU) having an actuator position v. engine speed map. The ECU utilizes only the measured engine speed to determine a desired actuator position from the map, and produces a control signal for effecting actuator operation. The control signal generated by the ECU can be converted to an analog signal by pulse width modulation, for example. The control signal is sent to an actuator for placing the actuator into the desired actuator position. The actuator is connected to a variable geometry member in the turbocharger so that operation and placement of the actuator into the desired actuator position thereby places the variable geometry member into a desired position to effect the desired change in turbocharger operation. In an example embodiment, the variably geometry member is a number of movable vanes that can be positioned to change the amount of exhaust gas flow directed to a turbine wheel of the turbocharger.
摘要:
The present invention provides a variable nozzle opening control unit insuring a low fuel consumption rate and excellent response speed in the low load mode for an exhaust turbine supercharger. To achieve the purpose described above, an opening of the variable nozzle of the exhaust turbine supercharger 10 is set to and maintained at the maximum value in the constant operating state when the load is not more than a prespecified load level, and also the opening is gradually made smaller, when the load is not less than the specified load level, as the load becomes higher. When the load shifts from the high load region to the low load region, the variable nozzle is more closed or maintained at the original opening. Further when the operating state may get close to the surging limit, the variable nozzle is more opened. When shifting from the low load region to the high load region, or when sifting from the low speed to the high speed, the variable nozzle is once opened more, and then closed more to return to the constant operating state.
摘要:
A turbocharger comprises a center housing, and a shaft positioned therein having a first end and a second end. A turbine housing is attached to one side of the center housing and has a turbine wheel disposed therein that is coupled to the first end of the shaft. A first variable geometry member is disposed within the turbine housing between an exhaust gas inlet and the turbine wheel. A compressor housing is attached to another side of the center housing opposite the turbine housing, and includes a compressor impeller disposed therein. The compressor impeller is coupled to the second end of the shaft. A second variable geometry member is disposed within the compressor housing, and is interposed between an air outlet and the compressor impeller. An actuator assembly is disposed within the turbocharger and is connected to both of the variable geometry members to provide simultaneous actuation of the same.
摘要:
The wasteful escape of exhaust energy during transitional operation of the engine due to unnecessary opening control of the nozzle vanes is prevented. In a control device for a variable-geometry turbocharger which allows adjustment of the opening of the nozzle in the turbine inlet, the basic opening target value of the nozzle is calculated on the basis of the actual engine rotational speed and load. The final opening target value of the nozzle is then calculated by adding a nozzle opening correction value VNta to this basic opening target value. In the calculation of this nozzle opening correction value VNta, the amount of variation nullAc in the engine load is multiplied by a correction gain calculated on the basis of the engine rotational speed and pressure ratio, and a filter processing using a specified transmission function is performed on the resulting value nullAc1. The amount of variation in load nullAc2 following this filter processing is used as the input value for the calculation of the nozzle opening correction value VNta.