摘要:
An optical circuit in which a grating router, such as an arrayed-waveguide grating, multiplexes together optical signals at different wavelengths, and a directional coupler directs a portion of the multiplexed signal back through the grating router to de-multiplex that portion and facilitate monitoring of the multiplexed optical signal at each of the different wavelengths.
摘要:
The network operating system includes an embedded platform for controlling operation of an agile optical network at the physical layer level. At the module embedded level, each module (card-pack) is provided with an embedded controller EC that monitors and control operation of the optical modules. At the next level, each shelf is provided with a shelf processor SP that monitors and control operation of the ECs over a backplane network. All optical modules are connected over an optical trace channel to send/receive trace messages that can then be used to determine network connectivity. At the next, link management level, a network services controller NSC controls the SPs in a negotiated span of control, over a link network. The control is address-based; each NSC receives ranges of addresses for the entities in its control, and distributes these addresses to the SPs, which in turn distribute addresses to the ECs in their control. One of the SPs operates as a router on the link network to relay signaling and control to all entities based on their address. Each NSC constructs, from queried information, a network topology fragment for the embedded elements under its control. A distributed topology system (DTS) shares this topology information with neighboring NSC's to build a complete network view, which can be used by all interested network applications.
摘要:
Disclosed is a telecommunications system link that includes plurality of spans each having a transmission fiber and a compensating fiber. The compensating fiber is selected to completely compensate dispersion slope while only partially compensating total dispersion. This configuration compensates dispersion over an operating wavelength range while at the same time providing a transmission path having non-zero dispersion.
摘要:
According to an exemplary embodiment of the present invention, an apparatus for dynamically controlling chromatic dispersion in an optical signal includes a coupled waveguide structure, and a device which alters an index of refraction of the coupled waveguide structure to effect a change in the chromatic dispersion. According to another exemplary embodiment of the present invention, a method for dynamically controlling chromatic dispersion includes providing a coupled waveguide structure and selectively altering an index of refraction profile of coupled waveguide structure to effect a change in the chromatic dispersion in an optical signal.
摘要:
A switch for switching data from a source to a destination along a network, at least a portion of which is optically based. The switch a plurality of input and output ports of optical transceivers. The switch an element connected to the input and output ports in which the data is reflected as many times as necessary until a desired output port is available for the data to be sent out to the destination. A method for transferring data in a telecommunications network. The method the steps of receiving data at a chassis of an optical switch in the network. There is the step of reflecting the data in the chassis until an output port of the switch becomes available to the data. There is the step of sending the data out the output port onto the network.
摘要:
An optical add/drop module includes an add channel, an input channel, a drop channel and an output channel, with each channel aligned to transmit or receive light reflected from a common mirror in at least one state of the add/drop module. Rotating the mirror changes the state of the module. In the module's add/drop state, light from the input channel reflects from the mirror into the drop channel and light from the add channel reflects off the mirror to the output channel. In the module's pass through state, light from the input channel reflects off the mirror into the output channel and light from the add channel reflects off the mirror to a position other than the drop channel. Arrays of add, input, drop and output channels can be coupled to a linear array of independent micro-electromechanical mirrors to provide an integrated set of optical add/drop modules.
摘要:
A wavelength division multiplexing/demultiplexing device is presented utilizing a polarization-based filter to separate odd and even wavelengths, or upper and lower channels of an input optical signal. The wavelength filter first converts the input signal to a predetermined polarization. A series of birefringent waveplates provide a polarization-dependent optical transmission function such that the polarized beam is decomposed into a first beam component carrying the first spectral band at a first polarization and a second beam component carrying the second spectral band at a second, orthogonal polarization. A beam displacer spatially separates the beam components into a pair of orthogonally-polarized beams. A quarter-wave plate converts these orthogonally-polarized beams into a pair of circularly-polarized beams, which are reflected by a mirror back along parallel optical paths through the quarter-wave plate, beam displacer, and waveplates. In the return pass, the quarter-wave plate converts the reflected circularly-polarized beams into two orthogonally-polarized beams having polarizations that are rotated by 90 degrees from those in the forward pass. The waveplates further purify the spectral characteristics of the reflected beams and maintain the polarization of one of the reflected beams, while rotating the polarization of the other reflected beam by 90 degrees so that both reflected beams have substantially the same polarization. A routing element directs one of the reflected beams exiting the waveplates to a first output port and the other reflected beam to a second output port.
摘要:
An optical add/drop multiplexor usable in a WDM optical communications system that can be re-configured to add and/or drop new arbitrarily selected wavelengths without adversely impacting added, dropped, or expressed traffic that is already provisioned. The optical add/drop multiplexor includes an optical add/drop module, an optical signal interleaver, and an optical signal de-interleaver. Re-configuration of the optical add/drop multiplexor is achieved by employing the optical signal interleaver to provide at least one arbitrarily selected wavelength, or combine a plurality of arbitrarily selected wavelengths, to generate added traffic provided to the optical add/drop multiplexor; and, by employing the optical signal de-interleaver to separate at least one arbitrarily selected wavelength from dropped traffic provided by the optical add/drop multiplexor.
摘要:
An optical beam path directing system has a field-flattening optically transmissive wedge installed in spatially dispersed beam paths upstream of the planar surface of a micro electro-mechanical switch (MEMS) or liquid crystal array. The parameters of the field-flattening wedge and its location in the diffracted beam paths are defined such that the wedge effectively rotates a nullbest fitnull planar surface approximation of the curvilinear focal plane of a concave reflector into coplanar coincidence with the optical signal-receiving surface of the MEMS. As a result, loss variation is essentially flat and minimized across the optical signal transmission band.
摘要:
A wireless optical communication systems using two optical transceivers located at the opposite ends of an optical communication line. The optical communication system can be either two-element, when each of the said transceivers contains one optical transmitter (emitter) and one optical receiver, or it can be four-element, where each of the said transceivers contains two optical transmitters and two optical receivers. The output of each of the optical transmitters is a diverging beam of incoherent electromagnetic radiation arranged to have a cross sectional diameter which is larger than the cross sectional diameter of the respective optical receiver at that point on the communication line at which the respective optical receiver is situated. The invention reduces the probability of communication failure, higher noise resistance, and lowers operation and production costs.