Abstract:
One method configures an all-optical network such that at least eighty percent of optical fiber spans of a portion of a first all-optical path of the network have substantially a first residual dispersion per span and at least eighty percent of optical fiber spans of a remainder of the first all-optical path have residual dispersions per span substantially differing from the first residual dispersion per span. The remainder of the first all-optical path includes an overlap between the first all-optical path and a second all-optical path of the network. The second all-optical path has a plurality of optical fiber spans and a substantially singly periodic dispersion map.
Abstract:
The present disclosure relates to dispersion slope compensation and dispersion map management systems and methods in an optical network utilizing a reconfigurable optical add-drop multiplexer (ROADM) with a plurality of different values of dispersion compensation modules (DCMs). The DCMs form a dispersion compensation ladder at certain intermediate nodes in the optical network to provide dispersion slope compensation and dispersion map management. The reconfigurable routing structure of the ROADM enables these intermediate nodes to route individual wavelengths to any one of the DCMs as required for the particular path of the wavelength. Advantageously, the present invention removes the requirement for banded compensation at receiver nodes and allows for dispersion map management at intermediate points along a fiber route as opposed to bulk compensation at the receiver.
Abstract:
The arrangement includes a transmitter (1-6) with two optical sources (1, 2) generating two optical carrier signals (L1, L2) having different frequencies. The optical carrier signals (L1, L2) are combined and divided in a first coupler (2) and fed to carrier signal inputs of two modulators (4, 5). The mixed carrier signals (L1+jL2, jL1+L2) are separately modulated by two modulation signals (a(t)) and (b(t)) and the modulated signals ((A1+jA2), (jB1+B2)) are combined in a first combiner and emitted as transmission signal (X(t)). Only on demodulator is necessary to regain the modulation signals (a(t), b(t)).
Abstract:
From an real valued OFDM signal (S0(t)) is a baseband signal (SB(t)) derived and converted into a complex single sideband modulation signal (n(t)). This is modulated onto an optical carrier (fOC) to generate a SSB transmission signal (SOT) having a small bandwidth an carrying the information in the envelope or in the power of the envelope. According to the modulation direct detection is possible. Only a small bandwidth is necessary for the transmission.
Abstract:
In accordance with some embodiments of the present disclosure, a method for spectrally spacing carrier waves comprises determining a frequency offset between a first frequency of a first optical carrier wave and a second frequency of a second optical carrier wave. The method further comprises adjusting the second frequency of the second optical carrier wave according to the frequency offset. The method additionally comprises combining a first optical signal associated with the first carrier wave and a second optical signal associated with he second carrier wave into a multi-frequency signal.
Abstract:
Herein disclosed a digital image sender for transmitting a digital image signal including image signals for color image reproduction, a reference clock signal and parallel control signals, including: a parallel/serial converter configured to convert the parallel control signals into a serial control signal by time division multiplexing; a superposition element configured to superpose the serial control signal obtained by the conversion by said parallel/serial converter on the reference clock signal and output a resulting superposition signal; and an electro-optic converter configured to convert the superposition signal outputted from said superposition element from an electric signal into an optical signal.
Abstract:
An optical transmitter includes a set of optical waveguides and first, second, and third optical modulators. Output ends of the optical waveguides of the set form a two-dimensional array capable of end-coupling the optical waveguides of the set to a multimode optical fiber in response to the array being located to optically face one end of the multimode optical waveguide. The first optical modulator is optically connected to a first of the optical waveguides of the set, and each of the second and third optical modulators is optically connected to the second and third of the optical waveguides of the set. The set of optical waveguides is configured to provide a coupling matrix of rank three or more between the optical modulators and optical propagation modes in the multimode optical fiber.
Abstract:
A distributed antenna system includes a plurality of remote units configured to service different regions of a service area, and a head-end unit configured to process and transmit downlink signals from base stations to the remote units over optical cables, and to process and transmit uplink signals from the remote units to the base stations, wherein the remote units are configured to adjust or filter a level of downlink signals from the head-end unit and to transmit the adjusted or filtered downlink signals to mobile stations, and to process and transmit uplink signals from mobile stations to the head-end unit over the optical cables.
Abstract:
There are provided a communications interface apparatus and a method of operating the same. The communications interface apparatus includes: a transmission line including a conductor line and a plastic optical fiber for optical communications; a signal transmitting unit transmitting a first data signal through the plastic optical fiber and transmitting a second data signal through the conductor line; and a signal receiving unit receiving the first data signal and the second data signal, wherein the signal transmitting unit differentiates a signal as the first data signal or the second data signal based on at least one of a level and a frequency of the signal to be transmitted.
Abstract:
An optical communication transmitting device includes a substrate, a first layer with a first optical refractive index formed on the substrate, a waveguide unit formed with a second optical refractive index formed on the first layer, and a second layer with a third optical refractive index covered on the top of the waveguide unit. The second optical refractive index is greater than the first optical refractive index. The second optical refractive index is greater than the third optical refractive index. The waveguide unit is formed from a photo-resistor layer by a high energy light source exposure.