Abstract:
It is described a telecommunication network (100). The telecommunication network (100) comprises a base station (110), which is privately owned and which is adapted to provide a restricted access service to a limited number of communication devices (113a, 113b, 113c), which are assigned to a picocell (111) of the telecommunication network (100). The telecommunication network (100) further comprises a network element (130), which is publicly available and which is adapted to provide unrestricted access service to communication devices (133a, 133b, 133c, 133d), which are assigned to a wide area cellular network. The base station (110) is coupled with the network element (130) via a radio transmission link (121). It is further described a method for operating a telecommunication network(100) of the above described type. Furthermore, it is described a base station (110) and a network element (130), which in connection with each other represent the described telecommunication network (100) and/or are adapted to carry out the described method for operating the telecommunication network (100).
Abstract:
A system is provided in which a transmission end provides at least one symbol in a frame or time slot with a guard interval which is extended in comparison with further symbols in the frame or time slot, the at least one symbol with the extended guard interval having a content which is known at the receiver end.
Abstract:
Methods for receiving data sent by a first emitter of a mobile telephony system to a first resource element of a resource, via a receiver, radiopockets being created during the reception, and data which is not received during the creation of the radiopockets being reconstructed by the receiver are provided. The data which is not received by the first emitter is received by a second emitter, in a temporarally offset manner, on the same resource element of the resource, between the radiopockets, and is used to reconstruct the sequence of data. A conversion is especially advantageous for carrying out a receiving method in UMTS compression mode during the reception of data which is sent continuously independently of the compression mode.
Abstract:
Apparatuses and methods for transmitting control data on a physical channel between a mobile radio device and a base station in a cellular network. In particular, in a mobile radio network according to the UMTS standard (UMTS=Universal Mobile Telecommunication System) a packet-oriented data transmission between the mobile radio device and the base station is controlled using control data, wherein the control data includes a packet number for identifying a data packet.
Abstract:
In a method for communicating by radio, a frequency band divided up into a plurality of subcarriers is used for the communication. Messages are sent from a base station to a user station and/or from the user station to the base station. Messages are processed at some times using a first FDMA method such as for example OFDMA and at other times using a second FDMA method such as for example IFDMA. A transmitter and a receiver implement the method.
Abstract:
A method is provided for rate matching a number of input bits in a time interval to a fixed number of output bits in the time interval, whereby the input bits consist of a set of at least two different bit classes, each of the classes having a certain number of bits in the time interval, whereby the rate matching is performed in two rate matching stages, whereby the first rate matching stage operates only on a selection out of the set of different bit classes, thus establishing a proportion between the number of bits of the different classes, and the second rate matching stage operates on all bit classes such that the proportion is exactly or approximately maintained after the second rate matching stage and the fixed number of output bits consisting of bits of the different bit classes is achieved.
Abstract:
A method transmits data between a base station and a terminal in a communication system. According to said method, data is transmitted subdivided into time segments (Zs,R) from the base station (HS-DSCH) that is jointly used by several terminals via the base station informs the terminals, and the base station informs the terminal via one of at least two control channels method encompasses the following: the at least two control channels (HS-SCCH1, HS-SCCH2) are monitored by the terminal; the terminal receives the piece of control information on a first of the at least two control channels (HS-SCCH1) within a first time segment (ZS1, R1); an individual decision parameter is generated for each of the parts (P1, P2) of control information based on the content of the respective part (P1, P2) of control information: an overall decision parameter is determined based on the individual decision parameters; data received on the data channel (HS-DSCH) and the piece of information received on the control channel (HS-SCCH1) are rejected in accordance with the overall decision parameter.
Abstract:
A method for transmitting data via a data transmission channel in a communication network. The transmission channel is made available for the wireless transmission between a transmitter and a receiver. The data transmission is carried out while taking into consideration the channel quality in such a manner that the channel quality data available during transmission is as current as possible and no unnecessary transmission of channel quality data is required.
Abstract:
A method is provided for operating a cellular radio communication system with a base station, which may be switched between an operating state without closed-loop antenna diversity and an operating state with closed-loop antenna diversity, emitting a downlink signal with a weighting vector and a user station, for receiving the downlink signal and transmitting an uplink signal to the base station, delivering back-coupling information to the base station in the operating state with closed-loop antenna diversity, representing a determined weighting vector. On transition of the radio communication system into the operating state with closed-loop antenna diversity, the user station delivers back-coupling information, representing a weighting vector determined and known before the transition into the operating state with closed-loop antenna diversity, to the base station until a current weighting vector is determined by measurement, and then delivers the back-coupling information representing the current weighting vector.
Abstract:
One or more dynamically selected signaling bits are added in a downlink from a base station to user equipment (UE) so that the UE can use an adaptive “symbol space” for uplink feedback (CQI/HARQ) signaling and know from the extra added downlink signaling bits and the MCS currently signaled in parallel how big a symbol space to use at the moment for the uplink feedback.