Abstract:
A signature scheme is provided in which a message is divided in to a first portion which is hidden and is recovered during verification, and a second portion which is visible and is required as input to the verification algorithm. A first signature component is generated by encrypting the first portion alone. An intermediate component is formed by combining the first component and the visible portion and cryptographically hashing them. A second signature component is then formed using the intermediate component and the signature comprises the first and second components with the visible portion. A verification of the signature combines a first component derived only from the hidden portion of the message with the visible portion and produces a hash of the combination. The computed hash is used together with publicly available information to generate a bit string corresponding to the hidden portion.
Abstract:
A method and apparatus are disclosed for using a single credential request (e.g., registered public key or ECQV certificate) to obtain a plurality of credentials in a secure digital communication system having a plurality of trusted certificate authority CA entities and one or more subscriber entities A. In this way, entity A can be provisioned onto multiple PKI networks by leveraging a single registered public key or implicit certificate as a credential request to one or more CA entities to obtain additional credentials, where each additional credential can be used to derive additional public key-private key pairs for the entity A.
Abstract:
A system for providing security services to a mobile device where the mobile device is in communication with a public network through a first network path that is subject to interference by a third party. The system includes a security server and a private network. The security server is operative to communicate with the mobile device through the private network. The security server is also operative to communicate with the public network through a second network path that is less susceptible to the interference by the third party than is the first network path. The security server communicates with the public network through the second network path to provide security services to the mobile device that are delivered over the private network.
Abstract:
A shielding article is provided, for shielding a device enabled for proximity-based communications, for example, NFC-enabled devices. The shielding article comprises a shielding component configured to prevent operation of an antenna of the device used for conducting proximity-based communications, without preventing operation of at least one other antenna of the device when the shielding component is aligned with the antenna used for conducting proximity-based communications. The shielding article may be separate from, or included in an accessory or carrying article and may be fixed or detachably coupled thereto.
Abstract:
A method for creating and authenticating a digital signature is provided, including selecting a first session parameter k and generating a first short term public key derived from the session parameter k, computing a first signature component r derived from a first mathematical function using the short term public key, selecting a second session parameter t and computing a second signature component s derived from a second mathematical function using the second session parameter t and without using an inverse operation, computing a third signature component using the first and second session parameters and sending the signature components (s, r, c) as a masked digital signature to a receiver computer system. In the receiver computer system, a recovered second signature component s′ is computed by combining a third signature component with the second signature component to derive signature components (s′, r) as an unmasked digital signature.
Abstract:
There is provided a method for secure communications. The method comprises receiving a transmission comprising a signature of a broadcast message at a communication device, and verifying the signature using a certificate.
Abstract:
A system and method for remote device registration, to monitor and meter the injection of keying or other confidential information onto a device, is provided. A producer who utilizes one or more separate manufacturers, operates a remote module that communicates over forward and backward channels with a local module at the manufacturer. Encrypted data transmissions are sent by producer to the manufacturer and are decrypted to obtain sensitive data used in the devices. As data transmissions are decrypted, credits from a credit pool are depleted and can be replenished by the producer through credit instructions. As distribution images are decrypted, usage records are created and eventually concatenated, and sent as usage reports back to the producer, to enable the producer to monitor and meter production at the manufacturer.
Abstract:
The present disclosure relates to systems and methods for secure communications. In some aspects, an initiator KMS receives, from an initiator UE, one or more values used in generation of an encryption key, which includes obtaining at least one value associated with a RANDRi. The initiator KMS sends the at least one value associated with the RANDRi to a responder KMS. The responder KMS generates the encryption key using the one or more values.
Abstract:
A method for creating and authenticating a digital signature is provided, including selecting a first session parameter k and generating a first short term public key derived from the session parameter k, computing a first signature component r derived from a first mathematical function using the short term public key, selecting a second session parameter t and computing a second signature component s derived from a second mathematical function using the second session parameter t and without using an inverse operation, computing a third signature component using the first and second session parameters and sending the signature components (s, r, c) as a masked digital signature to a receiver computer system. In the receiver computer system, a recovered second signature component s′ is computed by combining a third signature component with the second signature component to derive signature components (s′, r) as an unmasked digital signature.
Abstract:
An asset management system is provided which comprises one or more controllers, which operate as main servers and can be located at the headquarters of an electronic device manufacturer to remotely control their operations at any global location. The controller can communicate remotely over the Internet or other network to control one or more secondary or remote servers, herein referred to as appliances. The appliances can be situated at different manufacturing, testing or distribution sites. The controller and appliances comprise hardware security modules (HSMs) to perform sensitive and high trust computations, store sensitive information such as private keys, perform other cryptographic operations, and establish secure connections between components. The HSMs are used to create secure end-points between the controller and the appliance and between the appliance and the secure point of trust in an asset control core embedded in a device.