摘要:
The aspects enable a computing device to allocate memory space to variables during runtime compilation of a software application. A compiler may be modified to identify operations that can be performed on either a main pipe or an alternative pipe, identify chains of related operations that can be performed on either the main pipe or the alternative pipe, identify points in the execution of code at which the number of live values will exceed the number of registers, and choosing a chain of operations as a candidate to be moved to the alternative pipe in order to reduce the number of live values at identified points in the execution of code. The entire chosen chain of operations may be moved to the alternative pipe. The alternative pipe may perform the computations and return the results to the main pipe for execution.
摘要:
One embodiment of the present invention provides a system that improves program performance by enregistering memory locations. During operation, the system receives program object code which has been generated to use a specified number of registers that are available for a given target hardware implementation. Next, the system translates this object code to execute on a second hardware implementation which includes more registers than the first hardware implementation. The system uses these additional registers to improve the performance of the translated object code for the second hardware implementation. More specifically, the system identifies a memory access in the object code, and then rewrites an instruction associated with this memory access to access an available register instead of the original target memory location. To preserve program semantics, the system subsequently moderates accesses to the memory location to ensure that no threads access a stale value in the enregistered memory location.
摘要:
The aspects enable a computing device to allocate memory space to variables during runtime compilation of a software application. A first variable associated with a code segment within code being compiled may be identified and assigned a priority tag. A second variable associated with another code segment within the code being compiled may also be assigned a priority tag. A determination may be made regarding whether the first and second variables are contemporaneously live during execution, and whether legal storage location sets for the first and second variables overlap. The assigned priority tags may be used for assigning storage locations to the first and second variables based on the determination.
摘要:
The aspects enable a computing device to allocate memory space to variables during runtime compilation of a software application. A compiler may be modified to identify operations that can be performed on either a main pipe or an alternative pipe, identify chains of related operations that can be performed on either the main pipe or the alternative pipe, identify points in the execution of code at which the number of live values will exceed the number of registers, and choosing a chain of operations as a candidate to be moved to the alternative pipe in order to reduce the number of live values at identified points in the execution of code. The entire chosen chain of operations may be moved to the alternative pipe. The alternative pipe may perform the computations and return the results to the main pipe for execution.
摘要:
Disclosed are systems, methods and techniques for classifying portions of an area depicted in a digitally encoded map. For example, features in a digitally encoded map may be extracted to identify a component area at least partially bounded by a perimeter formed by structures. One or more egress segments in the perimeter may be identified and characterized. The component area may then be classified based, at least in part, on a proportionality of a length of the egress segment to a size of at least one dimension of the component area.
摘要:
In the various aspects, a virtual machine operating at the machine layer may use power consumption models to partition object code into portions, identify the relative power efficiencies of the mobile device processors for the various code portions, and route the code portions to the mobile device processors that can perform the operations using the least amount of energy. A dynamic binary translator process may translate the object code portions into an instruction set language supported by the hardware component identified as being preferred. The code portions may be executed and the amount of power consumed may be measured, with the measurements used to generate and/or update performance and power consumption models.
摘要:
The aspects enable a processor to concurrently execute markup language code (e.g., HTML) having embedded scripting language code (e.g., JavaScript®) during a page load operation by a browser. A markup language parser parses markup language code until embedded scripting language code is encountered. The segment of embedded scripting language code is extracted for execution by a scripting language engine which proceeds concurrently with speculative parsing of the markup language code. Markup language code generated by execution of scripting language code is evaluated to determine if it is well formed, and a partial rollback of the markup language parse and re-parsing of portions of the markup language code is accomplished if not. Concurrent parsing of markup language code and execution of scripting language code, with partial roll back of the parsing process when necessary, continues until all markup language code has been parsed and all scripting language code has been executed.
摘要:
A method for detecting a dependence violation in an application that involves executing a plurality of sections of the application in parallel, and logging memory transactions that occur while executing the plurality of sections to obtain a plurality of logs and a plurality of temporary results, where the plurality of logs is compared while executing the plurality of sections to determine whether the dependence violation exists.
摘要:
A system and method for allocating the nearest available physical memory in a distributed, shared memory system. In various embodiments, a processor node may broadcast a memory request to a first subset of nodes connected to it via a communication network. In some embodiments, if none of these nodes is able to satisfy the request, the processor node may broadcast the request to additional subsets of nodes. In some embodiments, each node of the first subset of nodes may be removed from the processor node by one network hop and each node of the additional subsets of nodes may be removed from the processor node by no more than an iteratively increasing number of network hops. In some embodiments, the processor node may send an acknowledgment to one node that can fulfill the request and a negative acknowledgement to other nodes that can fulfill the request.
摘要:
The use of a token-based memory protection technique may provide memory protection in a computer system employing memory virtualization. A token-based memory protection technique may include assigning a unique identifier to an application, process, or thread, and associating the identifier with a block of memory allocated to that application, process, or thread. Subsequent to assigning the identifier, a packet requesting access to that block of memory may include a token to be compared to the identifier. A memory controller may be configured to associate the identifier with the block of memory and to compare the token in the memory request packet to the identifier before granting access. If a second block of memory is subsequently allocated to the application, process, or thread, the identifier may be disassociated with the first block of memory and associated with the second block of memory.