摘要:
A semiconductor structure is provided that includes a lower interconnect level including a first dielectric material having at least one conductive feature embedded therein; a dielectric capping layer located on the first dielectric material and some, but not all, portions of the at least one conductive feature; and an upper interconnect level including a second dielectric material having at least one conductively filled via and an overlying conductively filled line disposed therein, wherein the conductively filled via is in contact with an exposed surface of the at least one conductive feature of the first interconnect level by an anchoring area. Moreover, the conductively filled via and conductively filled line of the inventive structure are separated from the second dielectric material by a single continuous diffusion barrier layer. As such, the second dielectric material includes no damaged regions in areas adjacent to the conductively filled line. A method of forming such an interconnect structure is also provided.
摘要:
A system, a method and a computer program product for analyzing a circuit design provide for discretizing the circuit design into a series of pixels. A fraction of at least one constituent material is determined for each pixel. A deflection is also determined for each pixel. The deflection is predicated upon a planarizing of the pixel, and it is calculated while utilizing an algorithm that includes the fraction of the at least one constituent material. A series of deflections for the series of pixels may be mapped and evaluated.
摘要:
A structure and process are provided that are capable of reducing the occurrence of discontinuities within the metallization, such as voiding or seams, formed during electroplating at the edges of semiconductor metallization arrays. The structure includes a metallization bar located around the periphery of the array. The process employs the structure during electroplating.
摘要:
A structure and process are provided that are capable of reducing the occurrence of discontinuities within the metallization, such as voiding or seams, formed during electroplating at the edges of semiconductor metallization arrays. The structure includes a metallization bar located around the periphery of the array. The process employs the structure during electroplating.
摘要:
The present invention provides a method for producing thin nickel (Ni) monosilicide or NiSi films (having a thickness on the order of about 30 nm or less), as contacts in CMOS devices wherein an amorphous Ni alloy silicide layer is formed during annealing which eliminates (i.e., completely by-passing) the formation of metal-rich silicide layers. By eliminating the formation of the metal-rich silicide layers, the resultant NiSi film formed has improved surface roughness as compared to a NiSi film formed from a metal-rich silicide phase. The method of the present invention also forms Ni monosilicide films without experiencing any dependence of the dopant type concentration within the Si-containing substrate that exists with the prior art NiSi films.
摘要:
A computer program product, comprising a computer usable medium having a computer readable program code embodied therein, said computer readable program code including an algorithm adapted to implement a method including the following steps. First, design information of the design structure is provided including a back-end-of-line layer of the integrated circuit which includes N interconnect layers, N being a positive integer. Next, each interconnect layer of the N interconnect layers is divided into multiple pixels. Next, a first path of a traveling particle in a first interconnect layer of the N interconnect layers is determined. Next, M path pixels of the multiple pixels of the first interconnect layer on the first path of the traveling particle are identified, M being a positive integer. Next, a first loss energy lost by the traveling particle due to its completely passing through a first pixel of the M path pixels is determined.
摘要:
A semiconductor structure in which the contact resistance in the contact opening is reduced as well as a method of forming the same are provided. This is achieved in the present invention by replacing conventional contact metallurgy, such as tungsten, or a metal silicide, such as Ni silicide or Cu silicide, with a metal germanide-containing contact material. The term “metal germanide-containing” is used in the present application to denote a pure metal germanide (i.e., MGe alloy) or a metal germanide that includes Si (i.e., MSiGe alloy).
摘要:
A method, apparatus, and computer program product for flattening a warped substrate. The substrate is placed on a planar surface of a clamping apparatus in direct mechanical contact with the planar surface. The substrate comprises surface regions S1, S2, . . . , SN having an average warpage of W1, W2, . . . , WN, respectively, wherein W1≦W2≦ . . . ≦WN and W1≦WN. Zones Z1, Z2, . . . , ZN of the planar surface respectively comprise vacuum port groups G1, G2, . . . , GN. Each group comprises at least one vacuum port. N is at least 2. A vacuum pressure PV1, PV2, . . . , PVN is generated at each vacuum port within group G1, G2, . . . , GN, at a time of T1, T2, . . . , TN to clamp surface region S1, S2, . . . , SN to zone Z1, Z2, . . . , ZN, respectively. The vacuum pressure PV1, PV2, . . . , PVN is maintained at the vacuum ports of group G1, G2, . . . , GN, respectively, until time TN+1. T1
摘要翻译:一种用于使翘曲的基底平坦化的方法,装置和计算机程序产品。 基板被放置在与平面表面直接机械接触的夹紧装置的平面表面上。 衬底包括表面区域S 1,S 2,...。 。 。 具有W 1,W 2 2的平均翘曲的S N N N。 。 。 ,其中W 1分别为W 1,其中W 1为= W 2 N。 。 。 < N>和< 1< 1>< N< N> Z区Z 1,Z 2 2,。 。 。 平面的Z N N分别包括真空端口组G 1,G 2,...。 。 。 ,G N N。 每个组包括至少一个真空端口。 N至少为2.真空压力P V1,P2 S2。 。 。 在组G 1,G 2 2中的每个真空端口处产生P SUB>。 。 。 在T 1时,T 2时,G N,N N 3。 。 。 ,T N N夹紧表面区域S 1,S 2,N 2。 。 。 ,Z N 1,Z 2,...,Z N 2。 。 。 ,Z N N 3。 真空压力P SUB>,P , 。 。 ,P SUB> N 2保持在组G 1,G 2 2的真空端口。 。 。 ,分别为N N + 1,直到时间T N + 1。 T 1 SUB>。 。 。 N + 1 N> N + 1。
摘要:
Stacked via pillars, such as metal via pillars, are provided at different and designated locations in IC chips to support the chip structure during processing and any related processing stresses such as thermal and mechanical stresses. These stacked via pillars connect and extend from a base substrate of the strip to a top oxide cap of the chip. The primary purpose of the stacked via pillars is to hold the chip structure together to accommodate any radial deformations and also to relieve any stress, thermal and/or mechanical, build-up during processing or reliability testing. The stacked via pillars are generally not electrically connected to any active lines or vias, however in some embodiments the stacked via pillars can provide an additional function of providing an electrical connection in the chip.