Abstract:
Systems and apparatuses include a diesel exhaust fluid tank, a first temperature sensor positioned within the diesel exhaust fluid tank and structured to provide first temperature information indicative of a first temperature, and a second temperature sensor positioned within the diesel exhaust fluid tank and structured to provide second temperature information indicative of a second temperature. The systems and apparatuses further include one or more processing circuits including one or more memory devices coupled to one or more processors, the one or more memory devices configured to store instructions thereon that, when executed by the one or more processors, cause the one or more processors to provide energy to a heating system based on the first temperature information and the second temperature information.
Abstract:
Systems and apparatuses include an alternator including a stator and a rotor structured to be coupled to a crankshaft of a prime mover, and processing circuits structured to: determine a crankshaft position, associate a crankshaft timestamp with the crankshaft position, determine a stator voltage waveform position, associate a stator voltage waveform timestamp with the stator voltage waveform position, determine a common time base using the crankshaft timestamp and the stator voltage waveform timestamp, determine a rotor position based on the crankshaft position and associated with the common time base, determine a load angle based on the rotor position and the stator voltage waveform position using the common time base, compare the load angle to a stability limit, and transmit a predicted pole slip signal to at least one of the prime mover or the alternator to inhibit a pole slip event when the load angle exceeds the stability limit.
Abstract:
A compressor bypass reintroduction system includes a compressor intake manifold and a bypass conduit. The compressor intake manifold defines a fluid plenum. The compressor intake manifold is engageable with a compressor. The bypass conduit extends into the fluid plenum and includes an ejector line. The ejector line is configured to be substantially collinear with the compressor and to discharge flow toward the compressor. In some embodiments, an outlet of the ejector is disposed proximate to an outlet of the fluid plenum that discharges flow into the compressor.
Abstract:
Generally, an overflow conduit is described in apparatuses, systems, and methods to protect a crankcase oil sump from overfill. The overflow conduit is to be connected to a crankcase oil sump of an engine, and is configured to passively receive oil from the crankcase oil sump to avoid an overfill condition from occurring in the crankcase oil sump. The overflow conduit is configured to deliver excess oil received to a sub-base tank located relatively below the crankcase oil sump, or in particular at or below an oil level in the crankcase oil sump.
Abstract:
Presented herein are systems for vehicle power control. The system includes a first controller arranged in a first hierarchical layer of a control topology, the first controller configured to control a first source of energy of a vehicle based on first data of the first source of energy, a second controller arranged in the first hierarchical layer of the control topology, the second controller configured to control a second source of energy of the vehicle based on second data of the second source of energy, and a third controller configured to receive the first data and the second data from the first hierarchical layer, generate a control signal based on the first data and the second data, and transmit the control signal to a component of the vehicle to control the component of the vehicle.
Abstract:
A vehicle includes an engine to receive a cracked gas mixture. A cracker of the vehicle can receive ammonia and energy, crack the ammonia to form the hydrogen gas and a nitrogen gas, and convey the hydrogen gas to the engine. A controller for the vehicle can receive a predefined route for the vehicle. The controller can predict a future load demand of the vehicle based on the predefined route. The controller can adjust a flow rate of ammonia delivered to the cracker based on the future load demand.
Abstract:
A method for controlling a dual fuel engine system includes determining a gas flow target for an internal combustion engine of the dual fuel engine system, where the gas flow target is based on a gas power target of the internal combustion engine, a thermal efficiency estimate of the internal combustion engine, and a lower heating value (LHV) within the internal combustion engine. The method also includes adjusting the gas flow target based on at least one of a measured gas temperature or a measured gas injector pressure and determining at least one base gas injector command based on the adjusted gas flow target, a gas substitution rate estimate, and a gas substitution rate target. The method further includes determining, based on the at least one base gas injector command, a gas injector command for at least one engine bank.
Abstract:
Systems and apparatuses include a circuit structured to: identify a first source object, a second source object, and a load bus object; determine locations of the first source object, the second source object, and the load bus object on a one-line topology; receive operational parameters of the first source object, the second source object, and the load bus object; define, using the one-line topology, a first route including objects electrically connected between the first source object and the load bus object; define, using the one-line topology, a second route including all objects electrically connected between the second source object and the load bus object; and control operation of the first route and the second route.
Abstract:
A method includes: receiving system data corresponding to an engine system. The system data includes a plurality of remaining useful life (RUL) values with each RUL value associated with a component of the engine system. The method further includes: comparing a first RUL value to a service interval threshold; generating a near-term service recommendation including a first list of components that correspond to each RUL value that are less than or equal to the service interval threshold; generating an extended term service recommendation including a second list of components and a downtime prediction; generating a coordinated service recommendation by dynamically populating one or more fields of the coordinated service recommendation based on the near-term service recommendation and the extended term service recommendation; and providing the combined service recommendation to a user device.
Abstract:
Systems and methods for managing the temperature of an energy storage system are provided. In some embodiments, the energy storage system includes a housing, a first terminal, a second terminal, an energy storage element disposed within the housing, a thermal management system, and a controller. In some embodiments, the energy storage element are configured to electrically connect to a load or a grid via the second terminal. The thermal management system is configured to manage a temperature within the housing and also configured to receive power from an external power source via the first terminal.