Abstract:
Formation of a thyristor-based memory cell is described. A first gate dielectric of the storage element is formed over a base region thereof located in a silicon layer. A transistor is coupled to the storage element via a cathode region located in the silicon layer. The transistor has a gate electrode formed over a second gate dielectric. A spacer is formed at least in part along a sidewall of the gate electrode facing a gate electrode of the storage element. A shallow implant region is formed in the silicon layer responsive at least in part to the spacer. The spacer offsets the shallow implant region from the sidewall. A portion of the shallow implant region is for an extension region. The first gate dielectric and the second gate dielectric are formed at least in part by deposition of a dielectric material.
Abstract:
A method for preparing a transparent conducting film coated with an AZO/Ag/AZO multilayer thin film with low resistivity and high light transmittance, and a transparent conducting film produced by the same method. The method for preparing a transparent conducting film coated with an AZO/Ag/AZO multilayer thin film, includes (a) forming a primary AZO thin film on a substrate using an AZO target doped with Al through a sputtering method; (b) depositing Ag on the primary AZO thin film using the sputtering method to form a deposited Ag layer; and (c) forming a secondary AZO thin film on the Ag thin film using the AZO target doped with Al through a sputtering method.
Abstract translation:制备涂覆有具有低电阻率和高透光率的AZO / Ag / AZO多层薄膜的透明导电膜的方法和通过相同方法制备的透明导电膜。 制备涂覆有AZO / Ag / AZO多层薄膜的透明导电膜的方法包括:(a)通过溅射法使用掺杂有Al的AZO靶在衬底上形成初级AZO薄膜; (b)使用溅射法在主AZO薄膜上沉积Ag以形成淀积的Ag层; 和(c)使用通过溅射法掺杂Al的AZO靶,在Ag薄膜上形成次级AZO薄膜。
Abstract:
An apparatus for preparing a catalyst for carbon nanotubes using spray pyrolysis and a method for preparing the catalyst are disclosed. The apparatus comprises a plurality of raw material tanks, an agitator to mix raw materials respectively supplied from the raw material tanks, a drier to spray the mixture supplied from the agitator and thus to heat and bake the same, and a storage to store a dried material discharged from the drier. The method comprises supplying a plurality of raw materials, mixing the raw materials with one another, spraying the raw material mixture in a liquid state and drying the same at a high temperature, and storing a catalyst generated in the drying process.
Abstract:
In a method of fabricating a semiconductor memory device, a thyristor may be formed in a layer of semiconductor material. Carbon may be implanted and annealed in a base-emitter junction region for the thyristor to affect leakage characteristics. The density of the carbon and/or a bombardment energy and/or an anneal therefore may be selected to establish a low-voltage, leakage characteristic for the junction substantially greater than its leakage absent the carbon. In one embodiment, an anneal of the implanted carbon may be performed in common with an activation for other implant regions the semiconductor device.
Abstract:
Disclosed is a method and system for controlling access for a mobile agent in a home network environment. The method includes the steps of: issuing a role ticket to the mobile agent; verifying access authority to service requested by the mobile agent through the role ticket; and granting the mobile agent access authority to the service. Accordingly, a table for managing access authority of a user is distributed to devices, so that it is possible to provide the mobile agent access control method and system capable of minimizing network traffic in the home network environment.
Abstract:
A new memory cell can contain only a single thyristor. There is no need to include an access transistor in the cell. In one embodiment, the thyristor is a thin capacitively coupled thyristor. The new memory cell can be connected to word, bit, and control lines in several ways to form different memory arrays. Timing and voltage levels of word, bit and control lines are disclosed.
Abstract:
A memory cell is provided which includes an access transistor and a gated lateral thyristor (GLT) device. The access transistor includes a source node. The gated lateral thyristor (GLT) device includes an anode node coupled to the source node of the access transistor.
Abstract:
A memory cell and methods of making and operating the same are provided. In one aspect, a method of forming a memory cell is provided that includes forming a MOS transistor that has a gate, a source region and a drain region. A bipolar transistor is formed that has a collector, a base and an emitter. The emitter of the bipolar transistor is formed to serve as the source region for the MOS transistor and the base of the bipolar transistor is formed to serve as a capacitive charge storage region for the memory cell.
Abstract:
A semiconductor device having a thyristor-based memory device exhibits improved stability under adverse operating conditions related to temperature, noise, electrical disturbances and light. In one particular example embodiment of the present invention, a semiconductor device includes a thyristor-based memory device that uses a shunt that effects a leakage current in the thyristor. The thyristor includes a capacitively-coupled control port and anode and cathode end portions. Each of the end portions has an emitter region and an adjacent base region. In one implementation, the current shunt is located between the emitter and base region of one of the end portions of the thyristor and is configured and arranged to shunt low-level current therebetween. In connection with an example embodiment, it has been discovered that shunting current in this manner improves the ability of the device to operate under adverse conditions that would, absent the shunt, result in inadvertent turn on, while keeping the standby current of the memory device to an acceptably low level.
Abstract:
A semiconductor device having a thyristor is manufactured in a manner that reduces or eliminates manufacturing difficulties commonly experienced in the formation of such devices. According to an example embodiment of the present invention, a thyristor is formed having some or all of the body of the thyristor extending above a substrate surface of a semiconductor device. The semiconductor device includes at least one transistor having source/drain regions formed in the substrate prior to the formation of the thyristor. One or more layers of material are deposited on the substrate surface and used to form a portion of a body of the thyristor that includes anode and cathode end portions. Each end portion is formed having a base region and an emitter region, and at least one of the end portions includes a portion that is in the substrate and electrically coupled to the transistor. A control port is formed capacitively coupled to at least one of the base regions.