Abstract:
Gettering contaminants for formation of integrated circuits on a semiconductor-on-insulator structure is described. A semiconductor-on-insulator structure is configured to attract contaminants. Contaminant attractor regions are formed using ion implantation into a semiconductor layer of the semiconductor-on-insulator structure. The semiconductor layer is located above a buried insulator layer of the semiconductor-on-insulator structure. The contaminant attractor regions are spaced away from active regions. Tiles are located on an upper surface of the buried insulator layer. The contaminant attractor regions are formed adjacent to, in close proximity to, or in the tiles. At least one dielectric layer laterally adjacent to the tiles and is disposed on the upper surface of the buried insulator layer. The at least one dielectric layer at least inhibits lateral migration of contaminants to the active regions.
Abstract:
A semiconductor device having a thyristor-based device and a pass device exhibits characteristics that may include, for example, resistance to short channel effects that occur when conventional MOSFET devices are scaled smaller in connection with advancing technology. According to an example embodiment of the present invention, the semiconductor device includes a pass device having a channel in a fin portion over a semiconductor substrate, and a thyristor device coupled to the pass device. The fin has a top portion and a side portion and extends over the semiconductor substrate. The pass device includes source/drain regions separated by the channel and a gate facing and capacitively coupled to the side portion of the fin that includes the channel. The thyristor device includes anode and cathode end portions, each end portion having base and emitter regions, where one of the emitter regions is coupled to one of the source/drain regions of the pass device. The gate of the pass device is further adapted to switch the pass device between a blocking state and a conducting state via the capacitive coupling and form a conductive path between the source/drain regions. A control port is capacitively coupled to the base region of the end portion of the thyristor that is coupled to the source/drain region of the pass gate and is adapted to facilitate switching of the thyristor between blocking and conducting states.
Abstract:
A new memory cell contains only a single thyristor without the need to include an access transistor. A memory array containing these memory cells can be fabricated on bulk silicon wafer. The memory cell contains a thyristor body and a gate. The thyristor body has two end region and two base regions, and it is disposed on top of a well. The memory cell is positioned between two isolation regions, and the isolation regions are extended below the well. A first end region is connected to one of a word line, a bit line and a third line. A second end region is connected to another of the word line, bit line, and third line. The gate is connected to the remaining of the word line, bit line and third line.
Abstract:
A new memory cell contains only a single thyristor without the need to include an access transistor. A memory array containing these memory cells can be fabricated on bulk silicon wafer. Each memory cell is separated from other memory cells by shallow trench isolation regions. The memory cell comprises a thyristor body and a gate. The thyristor body has two end region and two base regions. The gate is positioned over and insulated from at least a portion of one base region and offset from another base region. A first end region is connected to one of a word line, a bit line and a third line. A second end region is connected to another of the word line, bit line, and third line. The gate is connected to the remaining of the word line, bit line and third line.
Abstract:
In a method of fabricating a semiconductor memory device, a thyristor may be formed in a layer of semiconductor material. Carbon may be implanted and annealed in a base-emitter junction region for the thyristor to affect leakage characteristics. The density of the carbon and/or a bombardment energy and/or an anneal therefore may be selected to establish a low-voltage, leakage characteristic for the junction substantially greater than its leakage absent the carbon. In one embodiment, an anneal of the implanted carbon may be performed in common with an activation for other implant regions the semiconductor device.
Abstract:
Switching operations, such as those used in memory devices, are enhanced using a thyristor-based semiconductor device adapted to switch between a blocking state and a conducting state. According to an example embodiment of the present invention, a thyristor-based semiconductor device includes a thyristor having first and second base regions coupled between first and second emitter regions, respectively. A first control port capacitively couples a first signal to the first base region, and a second control port capacitively couples a second signal to the second base region. Each of the first and second signals have a charge that is opposite in polarity, and the opposite polarity signals effect the switching of the thyristor at a lower power, relative to the power that would be required to switch the thyristor having only one control port. In this manner, power consumption for a switching operation can be reduced, which is useful, for example, to correspond with reduced power supplied to other devices in a semiconductor device employing the thyristor.
Abstract:
A semiconductor memory device having a thyristor is manufactured in a manner that makes possible self-alignment of one or more portions of the thyristor. According to an example embodiment of the present invention, a gate is formed over a first portion of doped substrate. The gate is used to mask a portion of the doped substrate and a second portion of the substrate is doped before or after a spacer is formed. After the second portion of the substrate is doped, the spacer is then formed adjacent to the gate and used to mask the second portion of the substrate while a third portion of the substrate is doped. The gate and spacer are thus used to form self-aligned doped portions of the substrate, wherein the first and second portions form base regions and the third portion form an emitter region of a thyristor. In another implementation, the spacer is also adapted to prevent formation of salicide on the portion of the thyristor beneath the spacer, self-aligning the salicide to the junction between the second and third portions. In addition, dimensions such as width and other characteristics of the doped portions that are used to form a thyristor can be controlled without necessarily using a separate mask.
Abstract:
In an example gated-thyristor circuit, formation of thyristor body regions involves an angled implant of a thyristor body region, such as a base region, to mitigate capacitive coupling of a gated voltage pulse from the thyristor gate to a body region that is not underlying the thyristor gate. According to a more particular example embodiment, such a thyristor switches between a current-passing mode and a current blocking mode in response to at least one voltage pulse coupling to an underlying thyristor base region. Using a first ion type to provide one polarity, an immediately-adjacent thyristor base region is angle implanted through an emitter body region that is located to other side of the adjacent thyristor base region. The emitter body region is then implanted using ions of another ion type to provide the opposite polarity. This angle implantation permits definition of the adjacent thyristor base region sufficiently distant from (e.g., underlapping) the gate to mitigate gate-induced leakage to the second body region and the associated junction leakage between thyristor base regions. Applications include a variety of circuits benefiting from fast-switching and/or small-architecture features; example applications include thyristor-based latches and memory cells and power thyristor circuits.
Abstract:
A semiconductor device includes a thyristor having at least one body region thereof disposed in a substrate, and a filled trench having a conductive material. According to an example embodiment of the present invention, a conductive material having a narrow upper portion over a relatively wide lower portion is in a filled trench adjacent to at least one thyristor body region in a substrate. In one implementation, a thyristor control port is located over the wide lower portion and adjacent to the narrow upper portion of the conductive shunt and is adapted for capacitively coupling to the thyristor body region in the substrate for controlling current in the thyristor. In another implementation, the conductive material is electrically coupled to a buried emitter region of the thyristor and arranged for shunting current between the buried emitter region and a circuit node near an upper portion of the conductive material. With these approaches, conductive material can be used to fill a portion of the trench that electrically isolates a portion of a thyristor body in a substrate and/or to shunt current between a circuit node in the substrate, such as a buried emitter region, and an upper circuit node.
Abstract:
A thyristor-based semiconductor device includes a thyristor body that has at least one region in the substrate and a thyristor control port in a trenched region of the device substrate. According to an example embodiment of the present invention, the trench is at least partially filled with a dielectric material and a control port adapted to capacitively couple to the at least one thyristor body region in the substrate. In a more specific implementation, the dielectric material includes deposited dielectric material that is adapted to exhibit resistance to voltage-induced stress that thermally-grown dielectric materials generally exhibit. In another implementation, the dielectric material includes thermally-grown dielectric material, and when used in connection with highly-doped material in the trench, grows faster on the highly-doped material than on a sidewall of the trench that faces the at least on thyristor body region in the substrate. In still another implementation, the dielectric material includes both a thermally-grown dielectric material and a deposited dielectric material. These approaches are particularly useful, for example, in high-density and other applications where thermally-stable dielectric materials are desirable and/or where dielectric material growth at different rates is desirable.