Abstract:
Provided are: a multi-layered lamellar granule comprising a nucleating agent, a ceramide-containing artificial stratum corneum lipid lamellar layer which encases the nucleating agent and a polymer layer disposed on the artificial stratum corneum lipid lamellar layer; and an external skin application composition comprising the same. The external skin application composition shows improved moisturizing and barrier repair capabilities when applied to the skin, which can be advantageously used in cosmetics and pharmaceuticals.
Abstract:
Provided are a high-speed Discrete Fourier Transform (DFT) apparatus and a method thereof. The high-speed DFT apparatus includes a zero padding unit, a Fast Fourier Transform (FFT) unit, and a preamble index decision unit. The zero padding unit receives a first input signal having a length of a prime number and changes the first input signal into a second input signal having a length of an exponentiation of 2. The FFT unit performs a FFT on the second input signal outputted from the zero padding unit. The preamble index decision unit detects a preamble index from an output signal from the FFT unit.
Abstract:
An apparatus and method for performing beamforming or transmitting a plurality of bit streams output through Adaptive Modulation and Coding (AMC) via a plurality of transmission antennas in a base station using a multi-antenna scheme. The apparatus and method include classifying the plurality of transmission antennas into a plurality of transmission antenna groups; selecting one of the transmission antenna groups depending on a group selection signal being fed back from a mobile station; and outputting each of the bit streams to its associated transmission antenna among the transmission antennas constituting the selected transmission antenna group.
Abstract:
For data transmission/reception in a communication system, a transmitter precodes data to be transmitted via at least two antennas, with use of at least one precoding matrix of a predetermined rank, and transmits the precoded data to a receiver. A receiver receives a signal which is precoded with a precoding matrix of a predetermined rank, detects the precoding matrix, calculates a sum rate corresponding to the detected precoding matrix, and feeds back quality information on a channel formed between a transmitter and the receiver when the calculated sum rate falls within a predetermined rank among sum rates calculated for all precoding matrixes.
Abstract:
A sustained-release drug composition consisting essentially of microparticles of hyaluronic acid having a high molecular weight or an inorganic salt thereof and a protein or peptide drug encased in said microparticles, wherein the average size of said microparticles ranges from 0.1 to 40 μm.
Abstract:
A method and apparatus for transmitting/receiving feedback information in a multi-user multi-antenna system and a system supporting the same are provided, in which all possible combinations are created using column vectors included in a precoding codebook, column vectors are correlated in each of the combinations, column vectors comprising correlations exceeding a reference threshold are designated as similar vectors, at least two similar vector sets are formed with the similar vectors, and feedback information is generated based on the at least two similar vector sets and transmitted.
Abstract:
A method of transmitting/receiving feedback information representing channel quality in a MIMO-OFDM system, in which a receiver measures channel qualities of signals transmitted on a plurality of subbands through a plurality of transmitting antennas by a transmitter, selects a predetermined number of subbands having a highest transmission performance based on the measured channel qualities and preceding information, determines at least one subband group with a maximum rate from among the selected subbands and the preceding information associated with the at least one subband group, and transmits feedback information to the transmitter, the feedback information including channel quality information about the at least one subband group and the associated preceding information.
Abstract:
An apparatus and method for scheduling a multiuser and a single user in a Multiple Input Multiple Output (MIMO) system are provided. The method for scheduling a multiuser and a single user at BS in MIMO system includes determining ratios of MultiUser-MIMO (MU-MIMO) chunks and Single User-MIMO (SU-MIMO) chunks to allocation chunks, determining the MU-MIMO chunks in the determined ratio and the remaining chunks as the SU-MIMO chunks, transmitting chunk information relating to the determined chunks to one or more Mobile Stations (MSs), and, when Channel Quality Information (CQI) feedback information relating to the determined MU-MIMO chunks and the determined SU-MIMO chunks is received from the MSs, allocating chunks and streams for MU-MIMO/SU-MIMO to users who maximize overall capacity using the CQI feedback information.
Abstract:
A method is provided a method for transmitting data in a MIMO communication system. The method includes receiving feedback information including channel quality information of transmission antennas from terminals; selecting one of a multi-user mode and a single user mode according to the channel quality information; extracting information for the selected mode from the feedback information; selecting at least one terminal and a preceding matrix of at least one transmission antenna through which data is transmitted according to the extracted information and the selected mode; and transmitting data using the selected precoding matrix and information of the selected terminal.
Abstract:
A mobile communication apparatus that utilizes multiple base station/mobile station antennas and a mobile communication method performed therein are provided. The mobile communication apparatus includes a base station having at least two antennas and at least two mobile stations having at least one antenna, respectively. The base station restores weight information and channel status information from feedback signals received from the mobile stations, determines downlink investigation information that results in maximum transmission channel capacity based on the restored weight information and channel status information, selects mobile stations for simultaneous transmission based on the downlink investigation information, and processes data to be transmitted to the selected mobile stations based on the downlink investigation information.