Abstract:
A system comprises a plurality of albedo-increasing materials distributed on a surface of a man-made structure and having an albedo that is greater than an albedo of the surface of the man-made structure, wherein the albedo of the albedo-increasing materials is at least 0.15. The plurality of albedo-increasing materials are positioned and sized to increase an evaporation rate at the surface for a given temperature and decrease a temperature characterizing the man-made structure.
Abstract:
Glaucoma drainage devices including vario-stable valves and associated systems and methods are disclosed. A glaucoma drainage device includes a drainage lumen and a valve system coupled to the drainage lumen to control the flow of fluid through the drainage lumen. The valve system includes an adjustable valve with a diaphragm that is in communication with the drainage lumen and is movable to occupy varying amounts of the drainage lumen. In some embodiments, the valve system is maintained in a desired position without the use of power such that power is only needed when changing a position of the adjustable valve.
Abstract:
A method of manufacturing a valve for a fluid system is described herein. The method comprises determining a target cracking pressure for the valve of the fluid system, providing an inner wall having a first height and an outer wall having a second height, the first height varying from the second height by a height differential, and attaching a flexible membrane to the outer wall at the second height, wherein a central zone of the flexible membrane is in contact with the inner wall at the first height and the inner wall biases the flexible membrane from a neutral condition. The height differential is selected to provide resistance to displacement from the inner wall until pressure acting on the membrane exceeds the target cracking pressure.
Abstract:
A control valve for a fluidic system is disclosed. The control valve comprises a housing and a flow control membrane is disclosed. The flow control membrane is anchored within the housing to form a reference chamber on a first side of the membrane and a fluid flow channel on a second opposing side of the membrane. The fluid flow channel selectively opens and closes to permit fluid to flow from the inlet to the outlet, and the membrane is configured to control flow through the channel from the inlet to the outlet by deflecting in response to pressure differentials of the reference chamber pressure and the fluid flow channel pressure acting across the membrane.
Abstract:
Glaucoma drainage devices including vario-stable valves and associated systems and methods are disclosed. A glaucoma drainage device includes a drainage lumen and a valve system coupled to the drainage lumen to control the flow of fluid through the drainage lumen. The valve system includes an adjustable valve with a diaphragm that is in communication with the drainage lumen and is movable to occupy varying amounts of the drainage lumen. In some embodiments, the valve system is maintained in a desired position without the use of power such that power is only needed when changing a position of the adjustable valve.
Abstract:
An apparatus includes a medicament container and an actuator assembly coupled to a proximal end portion of the medicament container. A distal end portion of the medicament container is configured to be coupled to a needle. A piston is movably disposed within the medicament container such that the medicament container is divided into a first internal portion and a second internal portion, the first internal portion containing a medicament. The actuator assembly has a pressurized fluid container, a regulator and a bias member. The pressurized fluid container is configured to move relative to the medicament container between a first position and a second position. The regulator is configured to fluidically couple the pressurized fluid container and the second internal portion of the medicament container when the pressurized fluid container is in the second position. The bias member is configured to bias the pressurized fluid container in the first position.
Abstract:
Systems and methods are provided for storing and releasing hydrogen using packed-bed hydrogen storage elements in conjunction with elements such as optical or thermal energy for stimulating the release of stored hydrogen. The hydrogen storage system may include valves, piping, and other fixtures for ease of filling and emptying the unit. The system may also serve as a portable self-contained means of safe hydrogen storage that may be transported between the filling or generation site and the site of hydrogen release or use.
Abstract:
An apparatus includes a medicament container and an actuator assembly coupled to a proximal end portion of the medicament container. A distal end portion of the medicament container is configured to be coupled to a needle. A piston is movably disposed within the medicament container such that the medicament container is divided into a first internal portion and a second internal portion, the first internal portion containing a medicament. The actuator assembly has a pressurized fluid container, a regulator and a bias member. The pressurized fluid container is configured to move relative to the medicament container between a first position and a second position. The regulator is configured to fluidically couple the pressurized fluid container and the second internal portion of the medicament container when the pressurized fluid container is in the second position. The bias member is configured to bias the pressurized fluid container in the first position.
Abstract:
Several improvements have been made in inkjet print cartridges to realize 5 ng drop weights at ejection frequencies of 18 KHz. These improvements include small nozzle openings, improved heater resistor efficiency, and better ink supply reliability.
Abstract:
A polymeric optical switch in which a switching channel is formed in a polymer layer. The channel is formed by a micro-machining technique such as laser ablation or photo-imaging. A liquid metal switch is contained within the switching channel. The liquid metal switch operates by blocking or unblocking the optical path through the switching channel using a volume of liquid metal. Contact pads within the switching channel are wettable by the liquid metal and provide a latching mechanism for the switch. The polymer layer may be located between two transparent switch substrates. Solder rings are attached to the perimeters of the transparent switch substrates. The solder rings are wettable by solder and facilitate the creation of a hermetic seal between the substrates. Optical connectors allow optical signals to be coupled through the transparent layers and the switching channel.