Abstract:
A communications network has a plurality of nodes interconnected by an optical transmission medium. The transmission medium is capable of a carrying a plurality of wavelengths organized into bands. A filter at each node for drops a band associated therewith and passively forwards other bands through the transmission medium. A device is provided at each node for adding a band to the transmission medium. Communication can be established directly between a pair of nodes in the network sharing a common band without the active intervention of any intervening node. This allows the network to be protocol independent. Also, the low losses incurred by the passive filters permit relatively long path lengths without optical amplification.
Abstract:
A fast optical switch is needed to realize an economical and scaleable optical-core network. In the disclosed optical switch, switching is effected by rapid wavelength conversion. Either channel switching, Time Division Multiplex (TDM) switching or both may be provided by the fast optical switch. The operation of the fast optical switch is enabled by a fast scheduler. The throughput of the optical switch may be increased through a process of bimodal pipelined connection-packing. An in-band exchange of control signals with external nodes may serve to minimize the control overhead. Such control signals may include time-locking signals and connection-requests. A modular structure may be configured to comprise several fast optical switches to yield a high-speed, high-capacity, fully-connected optical switch.
Abstract:
A communications network has a plurality of nodes interconnected by an optical transmission medium. The transmission medium is capable of a carrying a plurality of wavelengths organized into bands. A filter at each node for drops a band associated therewith and passively forwards other bands through the transmission medium. A device is provided at each node for adding a band to the transmission medium. Communication can be established directly between a pair of nodes in the network sharing a common band without the active intervention of any intervening node. This allows the network to be protocol independent. Also, the low losses incurred by the passive filters permit relatively long path lengths without optical amplification.
Abstract:
Communities attributes are inserted into a packet in a predetermined sequence. A receiving device extrapolates policy information from the sequence of communities attributes for making intelligent routing decisions.
Abstract:
Method and apparatus for reducing load distribution delay in an internet protocol switch. A system of messaging allows leader and follower cards within a switch to communicate without spanning the external network and without significant involvement by the central computing module within a switch. When a call setup request is received by a leader card, it sends a broadcast message to follower cards within a multicast group. Each follower card responds with address and channel information which enable the leader card to perform load balancing and establish a connection through the appropriate follower card.
Abstract:
A radio access network includes a transport network layer; a radio network layer having a layer 2 network for communicating between entities within the radio network layer by exchanging datagrams having a predetermined format used only within the radio network layer. Accordingly, the present invention provides for a true decoupling at layer 2 between the radio network layer and the transport network layer. Addressing at layer 2 can enable both connectionless and connection oriented using an overlay connectivity model. Layer 2 in the radio network layer is implemented as an Ethernet network.
Abstract:
A network can be organized for providing virtual private LAN segment (VPLS) services to customers into a network core and an associated number of logical provider edges. Each logical provider edge is partitioned into a plurality of Edge-PEs and a Core-PE. Customers connect to the Edge-PE. The Edge-PE maintains a context (a virtual bridge) for each customer VPLS it serves, VPLS service is realized by a full mesh of so called virtual circuit (VC) tunnels between virtual bridge ports. Each VC tunnel is identified by 3 VC labels in each direction, the first label is used in the encapsulation of customer traffic from the ingress Edge-PE to the ingress Core-PE, the second from ingress Core-PE to egress Core-PE and the third from egress Core-PE to Egress Edge-PE. The mechanisms for the allocation of the label values to and how the label values are used provide a realization of VPLS service that is scalable and easy to administer.
Abstract:
A method and system applicable within a mobile transmission system for adaptively allocating a downlink data rate to an access terminal to compensate for channel fading. In accordance with the method of the present invention a downlink data rate selected in accordance with a determined signal-to-noise level, wherein the downlink data rate is associated with a specified signal-to-noise threshold to achieve a specified packet error rate. Next, a packet is transmitted to an access terminal at the selected downlink data rate. In response to successfully decoding the packet at the access terminal, the signal-to-noise threshold specified for the selected downlink data rate is decreased such that subsequent data rate selections are adaptively maximized. Responsive to a packet decoding error, the signal-to-noise threshold is abruptly increased to maintain the specified packet error rate.
Abstract:
Disclosed is a method of and apparatus for increasing the capacity of a wireless communication system. This is accomplished by having users that can support a higher than base modulation order be required to do so under predetermined conditions such as electrical distance from a base transceiver station (BTS) antenna to a user, the reception of data in a high speed burst (HSD) and the like. The same digital processor apparatus that may be used to provide a base order modulation scheme may be reprogrammed in a more complex fashion to provide signal processing at the higher modulation rate for any given user channel.
Abstract:
A method and system for fabricating semiconductor lasers includes the determination of a statistical predictive relationship between attribute measurements and mode index values for lasers fabricated according to a design. The predictive relationship predicts a specific mode index value using a specific attribute measurement. The predictive relationship may be applied in a fabrication process for lasers subsequently fabricated according to the design, and an appropriate grating structure providing increased production of lasers that lase at substantially target wavelengths is enabled.