Abstract:
This invention solves the problem of providing an efficient, new method for producing a fluoromethylene-containing compound. The problem can be solved by a method for producing a compound represented by formula (1) or a ring-closed or ring-opened derivative of the compound, wherein R1 represents an organic group, RX represents hydrogen or fluorine, R2a, R2b, R2c, and R2d are the same or different, and each represents —Y—R21 or —N(—R22)2, or R2b and R2c may join together to form a bond, wherein Y represents a bond, oxygen, or sulfur, R21 represents hydrogen or an organic group, and R22, in each occurrence, is the same or different and represents hydrogen or an organic group; the method comprising step A of reacting a compound represented by formula (2), wherein X represents a leaving group, and other symbols are as defined above, with a compound represented by formula (3), wherein the symbols are as defined above, in the presence of a reducing agent under light irradiation.
Abstract:
An analysis plate including: a substrate; and a molecule immobilized on a surface of the substrate, the molecule specifically recognizing a measurement target substance, wherein the substrate includes a selective reflection layer in at least part of the layer thereof. Preferably, the surface of the substrate has a concavo-convex structure capable of exhibiting a structural color. Preferably, a band of light reflection caused by a selective reflectivity of the selective reflection layer falls within a band of light reflection caused by the concavo-convex structure. Also provided are an analysis method using the same and a production method thereof.
Abstract:
[Problem] Provided is a non-peptide compound, which can be used as a GAPDH aggregation inhibitor, [Solution] Provided is a GAPDH aggregation inhibitor including as an active ingredient a compound represented by the chemical formula 1 wherein R1, R2, and R3 are each independently a hydrogen atom, a halogen atom, or an aliphatic hydrocarbon group having a carbon number of from 1 to 10, a polysulfurized derivative thereof, or a pharmaceutically acceptable salt thereof. The present compound has a GAPDH aggregation inhibitory activity to suppress intracerebral aggregation of various proteins involved in cerebral neurodegenerative diseases, thereby contributing to improvement in various brain neurological diseases associated with aggregation of these proteins such as Alzheimer's disease, Parkinson's disease, and cerebral infarction, and prevention of advanced seriousness of these diseases.
Abstract:
The present invention provides an organometallic complex having a high quantum efficiency even in a polymer thin film as a emitting material for organic electroluminescent (EL) element. The present invention relates to an organoiridium complex for an organic electroluminescent element represented by the following Formula; wherein a C—N ligand including two atomic groups (A1, A2), and a β-diketone ligand in line symmetry having two tert-butyl-substituted phenyl groups are coordinated with an iridium atom. The organoiridium complex of the present invention has a high quantum efficiency even in a polymer thin film with respect to green to yellow electroluminescence. (In the aforementioned Formula, R1, R2, and R3 are each a tert-butyl group or a hydrogen atom, and have at least one tert-butyl group; they may bond each other to thereby form a saturated hydrocarbon ring, when having two tert-butyl groups; A1, A2 are each an unsaturated hydrocarbon ring, at least one is a single ring, and at least one is a heterocyclic ring).
Abstract:
A seedling-cutting apparatus includes a pair of arms that is to nip a portion of a stem of a seedling for grafting and that can be opened and closed and a blade that is provided so as to be capable of reciprocating relative to the portion of the stem. At least one of the pair of arms includes a through hole or a cutout that penetrates a portion of the arms along a direction in which the blade reciprocates. At least a portion of the through hole or the cutout faces the portion of the stem and at least a portion of the blade moves through the through hole or the cutout.
Abstract:
Provided is an oxidation reactor capable of oxidizing hydrocarbons with both reaction efficiency and energy efficiency. The oxidation reactor according to the present invention includes a liquid inlet channel, a gas inlet channel, a gas-liquid mixing unit, and a flow reactor. Through the liquid inlet channel, a liquid containing a reaction substrate hydrocarbon is introduced. Through the gas inlet channel, a gas containing oxygen and ozone is introduced. The gas-liquid mixing unit mixes the liquid introduced from the liquid inlet channel with the gas introduced from the gas inlet channel. In the flow reactor, an oxidation catalyst is immobilized or packed. The gas-liquid mixing unit houses, in its channel, a mobile particle which is capable of rotating and/or moving to mix the liquid with the gas to thereby form a gas-liquid slug flow. The gas-liquid slug flow is introduced into the flow reactor.
Abstract:
An optical fiber for amplification includes a core having an inner core and an outer core surrounding the outer circumferential surface of the inner core. The relative refractive index difference of the inner core to a cladding is smaller than the relative refractive index difference of the outer core to the cladding. The outer core is entirely doped with erbium. The theoretical cutoff wavelength of an LP11 mode light beam is a wavelength of 1,565 nm or more. The theoretical cutoff wavelength of an LP21 mode light beam is a wavelength of 1,530 nm or less. The theoretical cutoff wavelength of the LP02 mode light beam is a wavelength of 980 nm or less.
Abstract:
An amplification optical fiber operable to propagate light beams in a plurality of modes in a predetermined wavelength range through a core doped with a rare earth element, wherein Expression (1) is satisfied, where a cutoff wavelength of a propagated highest mode light beam is defined as λmax, under conditions in which the cutoff wavelength of the highest mode light beam is defined as λc, a shortest wavelength of the wavelength range is defined as λmin, and a cutoff wavelength of a second-highest mode light beam to the highest mode light beam is λmin. λc>0.5 λmin+0.5 λmax (1).
Abstract:
An amplification optical fiber operable to propagate light beams in a plurality of modes in a predetermined wavelength range through a core doped with a rare earth element, wherein Expression (1) is satisfied, where a cutoff wavelength of a propagated highest mode light beam is defined as λmax, under conditions in which the cutoff wavelength of the highest mode light beam is defined as λc, a shortest wavelength of the wavelength range is defined as λmin, and a cutoff wavelength of a second-highest mode light beam to the highest mode light beam is λmin. λc>0.5 λmin+0.5 λmax (1)
Abstract:
A polymer membrane for cancer cell detection having a surface provided with a mold having a three-dimensional structure complementary to a portion of a steric structure of a cancer cell to be detected; a method of producing the same; and a cancer cell detection device including the polymer membrane are provided. The polymer membrane for cancer cell detection can be obtained, for example, by a producing method including: polymerizing monomers in presence of cancer cells to be detected, to form a cancer cell-containing polymer membrane having the cancer cells incorporated therein; and removing at least part of the cancer cells incorporated in the cancer cell-containing polymer membrane.