Abstract:
A process for the conversion of a hydrocarbonaceous oil in the presence of hydrogen and an iron-coal catalyst is provided in which a slurry of catalyst in the oil is treated with a hydrogen sulfide-containing gas at specified conditions prior to subjecting the slurry to hydroconversion conditions.
Abstract:
A method for decreasing the amount of coke produced during the cracking of hydrocarbon feedstock to lower molecular weight products in a reaction zone is disclosed, where the feedstock contains at least two metal contaminants selected from the class consisting of nickel, vanadium and iron, and where these contaminants become deposited on the catalyst. The method comprises passing catalyst from the reaction zone through a regeneration zone operated under net reducing conditions and through a reduction zone maintained at an elevated temperature for a time sufficient to at least partially passivate the catalyst.
Abstract:
Nitrogen-containing carbonaceous feeds such as hydrocarbonaceous oils and coal are hydroconverted in the presence of a solid vanadium-containing catalyst and a hydrogen halide.
Abstract:
High surface area metal-containing catalysts are prepared by dispersing a thermally decomposable metal compound in a hydrocarbon oil having a Conradson carbon content of up to about 50 weight percent, the thermally decomposable metal compound being added in an amount sufficient to obtain a specified ratio of atoms of Conradson carbon of the oil chargestock to atoms of metal constituent of the thermally decomposable compound, heating the compound in the presence of a gas comprising either hydrogen or hydrogen sulfide or hydrogen and hydrogen sulfide to form a solid high surface area catalyst within the oil, and recovering the resulting high surface area catalyst. The metal constituent of the thermally decomposable metal compound may be a metal of Groups II, III, IV, V, VIB, VIIB, VIII or mixtures thereof. The high surface area solids are suitable as catalysts, catalyst supports or catalyst components for use in hydrocarbon treating processes and in chemical processes.
Abstract:
A combination slurry hydroconversion, coking and coke gasification process is provided wherein solid fines having an average particle size of less than 10 microns in diameter or the ashes thereof recovered from a gaseous product derived from the coke gasification are used as a catalyst in the hydroconversion stage in combination with a catalyst produced from an oil soluble metal compound in situ in the chargestock of the hydroconversion zone.
Abstract:
A catalytic hydroconversion process for a hydrocarbonaceous oil is effected by dissolving an oil-soluble metal compound in the oil, converting the compound to a solid, non-colloidal catalyst within the oil and reacting the oil containing the catalyst with hydrogen. Preferred compounds are molybdenum compounds.
Abstract:
Improved processes for the combined desulfurization and hydroconversion of various sulfur-containing pertroleum oils, and particularly various residua feedstocks, are disclosed. These feedstocks are thus contacted with alkali metals, such as sodium, in the molten state, in a conversion zone maintained at specified conditions such that the feedstocks are both desulfurized and subjected to significant hydroconversion, particularly demonstrated by significant reductions in the 1,050.degree. F+ fraction of these feedstocks, as well as significantly decreased Conradson carbon and increased API gravity. In addition, the deep demetallization and moderate denitrogenation of these feedstocks is also achieved. These important results are obtained by maintaining the conversion zone at temperatures of above 750.degree. F, and in the presence of sufficient added hydrogen to produce a hydrogen pressure in the conversion zone of between about 1500 and 3000 psig.
Abstract:
A heavy hydrocarbonaceous oil is converted to lower boiling hydrocarbon products by treatment with hydrogen in the presence of a catalyst comprising a metal phthalocyanine and a particulate iron component.
Abstract:
A catalytic hydroconversion process is effected by reacting with hydrogen a heavy hydrocarbonaceous oil containing a catalyst comprising an iron component and a catalytically active other metal component prepared by dissolving an oil soluble metal compound in the oil and converting the metal compound in the oil to the corresponding catalytically active metal component. Preferred oil soluble compounds are molybdenum compounds.
Abstract:
Processes for the simultaneous desulfurization and hydroconversion of heavy carbonaceous feeds, including various sulfur-containing heavy petroleum oils, are disclosed. These feeds are contacted with alkali metal hydroxides in a conversion zone, in the presence of added hydrogen, and at elevated temperatures, whereby the feeds are substantially desulfurized, while at the same time significant upgrading of these feedstocks is obtained as demonstrated by decreased Conradson carbon, increased API gravity, and the conversion of a substantial portion of the 1,050.degree. F+ portion of the feedstream. In addition, methods for the regeneration of alkali metal hydroxides from the alkali metal salts produced in the conversion zone are disclosed.