Abstract:
Systems and methods are presented to improve the performance of a constant bit rate iterative decoder by providing elastic buffering, while utilizing a relatively simple decoder architecture capable of maintaining a fixed number of iterations of a lower value. An LDPC decoder can be designed, for example, to support less than the maximum possible number of iterations, and can, for example, be mated to elastic input and output buffers. If a given code block, or succession of code blocks, requires the maximum number of iterations for decoding, the decoder can, for example, run at such maximum number of iterations and the elastic input buffer can, for example, hold code blocks waiting to be processed so as to maintain a constant input rate. Alternatively, if one or more code blocks requires less than the nominal number of iterations, the output buffer can store those code blocks so as to preserve a constant output rate. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, and is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.
Abstract:
A non-navigation data system for providing traffic data service in a mobile environment can include a data decoder for decoding a digital data stream from a digital audio radio transmission source, location determining means (such as GPS or cellular location determining schemes) for determining a current location of a mobile receiver receiving the digital data stream, a display for displaying traffic data corresponding to the current location, and a plurality of static maps wherein the traffic data corresponding to the current location is overlaid at least over a portion of the static maps.
Abstract:
Systems and methods are presented for transmitting additional data over preexisting differential COFDM signals by modulating existing data carriers with a phase and an amplitude offset. In exemplary embodiments of the present invention, additional data capacity can be achieved for an COFDM signal which is completely backwards compatible with existing satellite broadcast communications systems. In exemplary embodiments of the present invention additional information can be overlayed on an existing signal as a combination of amplitude and phase offset from the original QPSK symbols, applied for each information bit of the overlay data. With two additional levels of modulation, a receiver can demodulate the information from each of the previous stages and combine the information into a suitable format for soft decoding. The first stage of demodulation will be recovery of overlay data from the amplitude modulated D8PSK. Because other amplitude variations due to multi-path are also expected, the data gathered from the FFT in the receiver must be equalized to the channel conditions. After channel equalization has been performed, soft overlay data can then be derived from the distance off the unit circle. In order to recover the phase modulated overlay data, the equalized symbols must first be differentially demodulated and corrected for any common phase error offset. After common phase removal, overlay phase information can be obtained.
Abstract:
Systems and methods are provided for improved traffic flow reporting (e.g., system bandwidth conservation and timely traffic flow updates) using in-vehicle devices, service hub, and communications system for transmitting aggregated traffic flow data to the vehicles. In-vehicle devices store data relating to monitored segments of roadways (e.g., segment identifiers or location codes and designated range(s) of speed), and send messages to the hub when current vehicle speed is not within a selected range designated for the current segment of roadway where the vehicle is located. The hub provides updated traffic flow data based on the messages to the communications system for transmission to the vehicles. Vehicles can be configured to send messages based on various criteria. One or more selected vehicles can be commanded to send a message to the hub. Vehicles can respond to location-specified content in broadcast data when they determined themselves to be in the specified location.
Abstract:
Methods and apparatus are presented to allow one receiver architecture to be used for the reception of two different SDARS signals. Common receiver functions can be utilized to process each signal, thereby obviating the need to duplicate hardware elements. For example, it can be assumed that both signals will not be received at the same time, thus allowing for considerable hardware reuse and lowering the cost of an interoperable receiver.
Abstract:
A combination of a radio receiver with a detachable controller that determine sends either reduced or enhanced metadata about received programming to the detachable controller based upon periodic authorization. A connection from the detachable control device to the radio receiver carries commands to the radio receiver and carries only the reduced set of metadata, such as tuned channel and tuned channel name, from the radio receiver to the controller. The controller is authorized by sending a radio identifier from the radio receiver to the control device, determination of an authentication code at the controller and communication of the determined authentication code back to the controller for validation. Upon validation, an enhanced set of metadata, including song title and artist, is sent to the controller. The enhanced metadata, the reduced metadata, or both, are optionally able to be encrypted. The radio receiver periodically performs this authorization processing.
Abstract:
Systems, methods and apparatus are described to interleave LDPC coded data for reception over a mobile communications channel, such as, for example, a satellite channel. In exemplary embodiments of the present invention, a method for channel interleaving includes segmenting a large LDPC code block into smaller codewords, randomly shuffling the code segments of each codeword and then convolutionally interleaving the randomly shuffled code words. In exemplary embodiments of the present invention, such random shuffling can guarantee that no two consecutive input code segments will be closer than a defined minimum number of code segments at the output of the shuffler. In exemplary embodiments of the present invention, by keeping data in, for example, manageable sub-sections, accurate SNR estimations, which are needed for the best possible LDPC decoding performance, can be facilitated based on, for example, iterative bit decisions.
Abstract:
Methods and apparatuses provide personalized radio by outputting selected songs from multiple channels from one or more source streams. Users can specify favorite channels for building their personal playlists, or multiple default playlist channels can be provided by genre or other criteria. User like/dislike inputs via the radio receiver generate filter data used to search all channels for matches or block songs from playback. Filter data can also be based on virtual DJ recommendations. Channel searching for matches involves monitoring real-time song and artist labels or other metadata for all channels carried in a separate data channel. Personalization can also be provided by using filter data to select content from a mixed channel comprising content from a selected group of channels. Connectivity options and web interfaces are provided to facilitate transfer and sharing of customization parameters for personalized radio configuration.
Abstract:
Systems and methods are provided to implement and facilitate cross-fading, interstitials and other effects/processing of two or more media elements in a personalized media delivery service to experience consistent high quality. The effects or crossfade processing may occur on the broadcast/publisher/server-side, but may be personalized to a specific user, allowing a personalized experience for each user, where the processing burden is minimized on the downstream side/client device. This approach enables a consistent user experience, independent of client device capabilities. A large-scale personalized content delivery service may be implemented by limiting the processing to the first and last chunks of any file. In exemplary embodiments, this type of processing may easily be accommodated in cloud computing technology, where first and last files are extracted and processed within the cloud to meet the required load. Processing may be done locally, by the broadcaster, with sufficient processing power to manage peak load.
Abstract:
A method and apparatus are provided for generating a personalized radio channel playlist by simultaneously buffering multiple received channels from one or more source streams, and then selecting songs or tracks to playback from the buffered channels. Users can specify favorite channels for building their personal playlists, or multiple default playlist channels can be provided by genre or channels related in some other way. Navigation tools permit users to skip ahead and backward in the playback stream. A personalized radio channel playlist can be implemented as (1) content selected from buffered channels based on user preferences for artists, songs and the like, or (2) as a Mix Channel in which content from selected buffered channels is automatically mixed for playback in response to selection of a preset button assigned to the Mix Channel.