Abstract:
A flash memory apparatus includes: a cell array including a plurality of main blocks, a code addressable memory (CAM) block, and a security block; a control unit configured to detect a threshold voltage change data of a main block to which a program operation has been performed among the plurality of main blocks, and set a trimming value corresponding to the detected threshold voltage change data; and a read voltage generation unit configured to generate a read voltage according to the set trimming value.
Abstract:
A method of operating a nonvolatile memory device including a memory cell array having first and second main cells for storing external input data, first spare cells for storing data for error correction code (ECC) processing on the data stored in the first and second main cells and second spare cells for storing data for ECC processing on the data stored in the first and second main cells which involves reading the data stored in the first spare cells, reading the data stored in the second main cells and the data stored in the second spare cells, and performing the ECC processing on the data read from the second main cells using the data read from the first spare cells and the data read from the second spare cells.
Abstract:
An operation method of a display driver includes generating a count value by counting a period of a synchronization signal related to a synchronization packet received from a host, receiving a mode change command from the host, the mode change command indicating a change from a video mode transmitting first image data to a display by bypassing a frame memory to a command mode transmitting second image data to the display through the frame memory, and generating an internal synchronization signal having a period substantially equal to the period of the synchronization signal by using the count value based on the mode change command after a last pulse of the synchronization signal is generated. A time interval between the last pulse and a first pulse of the internal synchronization signal is equal to the period of the synchronization signal.
Abstract:
The present invention relates to Pi5-1 and Pi5-2 proteins which enhance resistance to Mag-naporthe oryzae, genes which encode the proteins, a recombinant vector comprising the genes, a plant transformed with the recombinant vector and seeds thereof, a method of increasing resistance to a plant pathogen by expressing the genes in a plant, antibodies against the proteins, and a composition comprising the genes which are useful for enhancing resistance to a plant pathogen.
Abstract:
There is provided a motor. The motor may include a rotor case including a driving magnet formed on an inner circumferential surface thereof and providing a driving force by interacting with a coil of a stator, a low-speed control magnet formed on an outer circumferential surface of the rotor case and generating a frequency allowing for low-speed rotation enabling label printing as the rotor case rotates at a low speed; and a sensing part sensing an analog signal generated from the low-speed control magnet.
Abstract:
A semiconductor memory apparatus includes a memory device having a first plane and a second plane and a repair address latch unit configured to latch a plurality of repair addresses outputted from the memory device. The apparatus also includes an address comparison unit configured to compare the plurality of repair addresses stored in the repair address latch unit and a first plane address and a second plane address which are sequentially inputted. A repair processing unit is configured to selectively activate corresponding memory cell groups of the first plane and the second plane in conformity with the comparison result of the address comparison unit under the control of a first plane signal, a second plane signal and a start pulse signal.
Abstract:
Described are variants of a parent α-amylase that exhibits an alteration in at least one of the following properties relative to said parent α-amylase: specific activity, substrate specificity, substrate binding, substrate cleavage, thermal stability, pH-dependent activity, pH-dependent stability, oxidative stability, Ca2+ dependency, pI, and wash performance. The variants are suitable for starch conversion, ethanol production, laundry washing, dish washing, hard surface cleaning, textile desizing, and/or sweetener production.
Abstract:
An auto-balancing device, and a disc chucking device and a disc driving device equipped with the auto-balancing device are disclosed. The auto-balancing device may include: a housing, which is coupled with a rotating body, and on which a boss is formed; multiple balancing members, which are rotatably supported by the boss, and in at least one of which a hole is formed; and a guiding roller, which is inserted in the hole, and which guides a movement of the balancing member. The auto-balancing device can be utilized to reduce noise and vibration for a rotating body during acceleration and deceleration and during high-speed rotations.
Abstract:
There is provided a disk chucking apparatus according to an exemplary embodiment of the present invention, including: a centering case fixed on the inner peripheral surface of a disk; and a claw formed in the centering case and including a contact unit which rotates in a horizontal direction at the time of mounting the disk and is introduced into the centering case to elastically support the inner peripheral surface of the disk.
Abstract:
A disk chucking device and a disk driving device having the same are disclosed. The disk chucking device may include: a chuck base, on which a boss is formed; chuck chips inserted in the chuck base in a manner such that the chuck chips protrude out from the chuck base; an elastic member, which elastically supports a pair of adjacent chuck chips towards an outer side of the chuck base; and a protrusion portion, which is formed on a bottom of the boss, and which supports the elastic member. The disk chucking device can improve the environment of the elastic members that support the chuck chips, to improve the alignment between the rotation centers of the disk and the chuck base.