Abstract:
The present technology describes various embodiments of systems and methods for handling emissions. More specifically, some embodiments are directed to systems and methods for collecting heated particulate from a coal processing system. In one embodiment, a method of handling emissions from a coal processing system includes inletting the emissions into a duct. The emissions include heated particulate. The method further includes slowing a speed of the emissions traveling through the duct and disengaging the heated particulate from the emissions without the use of a physical barrier. In some embodiments, the heated particulate is slowed, cooled, and diverted from an emissions pathway into a collection bin.
Abstract:
The present technology is generally directed to systems and methods for improving quenched coke recovery. More specifically, some embodiments are directed to systems and methods utilizing one or more of a screen, barrier, or reflector panel to contain or redirect coke during or after quenching. In a particular embodiment, a quench car system for containing coke includes a quench car having a base, a plurality of sidewalls, and a top portion. The system can further include a permeable barrier covering at least a portion of the top of the quench car, wherein the permeable barrier has a plurality of apertures therethrough.
Abstract:
The present technology is generally directed to methods of decarbonizing coking ovens, and associated systems and devices. In some embodiments, a method of operating and decarbonizing a coking oven can include inserting a charge of coal into the coking oven and heating the coal. The method can further include removing at least a portion of the charge, leaving behind coking deposits in the coking oven. At least a portion of the deposits can be continuously removed from the coking oven. For example, in some embodiments, at least a portion of the deposits can be removed each time a new charge of coal is inserted in the coking oven.
Abstract:
Treating cooling water in industrial production facilities and associated systems, devices, and methods are disclosed herein. The system can comprise a cooling tower with a first and second cell, each having a housing to receive return water and a sump below to maintain supply water configured to directly contact molten metal. The system includes an inlet and an inlet line to provide return water to the cooling tower and an outlet and an outlet line to direct supply water back to the industrial production facility. The inlet, outlet, and cooling tower form a closed-loop network. Additionally, a blowdown line is fluidically coupled to the outlet to divert a portion of the supply water away from the closed-loop network.
Abstract:
Systems for continuous granulated metallic unit (GMU) production, and associated devices and methods are disclosed herein. In some embodiments, a continuous GMU production system includes a furnace unit, a desulfurization unit, a plurality of granulator units, and a cooling system. The furnace unit can receive input materials such as iron ore and output molten metal. The desulfurization unit can reduce a sulfur content of the molten metallics received from the furnace unit. Each of the plurality of granulator units can include a tundish that can control the flow of molten metallics and a reactor that can granulate the molten metallics to form GMUs. The cooling system can provide cooled water to the reactor. Continuous GMU production systems configured in accordance with embodiments of the present technology can produce GMUs under continuous operations cycles for, e.g., at least 6 hours.
Abstract:
Reduced-waste systems and methods for granulated metallic units (GMUs) production are disclosed herein. A representative method can include receiving a first supply of molten iron and producing GMUs by granulating the molten iron poured onto a target material of a reactor. The method can include removing residual fines of the GMUs via a classifier based on a threshold particle size and mixing the residual fines with a second supply of molten iron to produce additional GMUs.
Abstract:
High quality coke products including unique properties, such as Coke Reactivity Index (CRI) properties, fixed carbon content, and sulfur content.
Abstract:
A coke product configured to be used in foundry cupolas to melt iron and produce cast iron products is disclosed herein. In some embodiments, the coke product has a Coke Reactivity Index (CRI) of at least 30% and an ash fusion temperature (AFT) less than 1316° C. Additionally or alternatively, the coke product can comprise (i) an ash content of at least 8.0%, (ii) a volatile matter content of no more than 1.0%, (iii) a Coke Strength After Reaction (CSR) of no more than 40%, (iv) a 2-inch drop shatter of at least 90%, and/or (v) a fixed carbon content of at least 85%.
Abstract:
A coke oven includes an oven chamber configured to support and heat a coal bed, a castable slab below the oven chamber, and a foundation supporting the heat recovery oven. One or more beams are positioned between the castable slab and the foundation. The beams extend from a first end of the oven chamber to a second end of the oven chamber, forming a plurality of air gaps between the castable slab and the foundation. Heat from the oven chamber is dissipated by the one or more beams.
Abstract:
Systems and methods for removing carbonaceous clinker material from a coke oven are described. A coke oven can be provided including an oven floor, coke, and clinker material deposited on the oven floor. After a temperature of the coke oven has reached a first temperature (e.g., after heating coal in the oven to produce coke), the method includes increasing the temperature of the coke oven to a second temperature that is higher than the first temperature for a predetermined amount of time. After the predetermined amount of time, the temperature is reduced to a third temperature that is lower than the first temperature.