Abstract:
A plane light source structure for planar display includes a light guide plate and a light source. Material of the light guide plate is transparent plastic. The light guide plate is regarded as the lower plate of LCD panel when it is used as back light. On the other hand, the light guide plate is regarded as the upper plate of LCD panel when it is used as front light.
Abstract:
A scan driving circuit includes a first sub-circuit and a second sub-circuit. The first sub-circuit receives a driving signal and outputs the driving signal to a first scan line of the active matrix via a first output terminal after a predetermined time delay. The second sub-circuit is electrically connected to the first sub-circuit, receives the driving signal transferred from a second output terminal of the first sub-circuit, and outputs the driving signal to a second scan line of an active matrix after the predetermined time delay. Furthermore, the first sub-circuit includes a unidirectional conducting device electrically connected between the first output terminal and the second output terminal.
Abstract:
A liquid crystal display (LCD) and fabricating method thereof. The fabricating method includes providing a double-layered substrate structure having a first seal pattern, inserted along the periphery thereof, wherein the first seal pattern has a notch for liquid crystal injection, facing an injecting direction of the liquid crystals, forming a second seal pattern near the notch, parallel to the injecting direction, injecting the liquid crystals via the notch along the injecting direction, and sealing the notch with a third seal pattern. According to the invention, the permeating rate of the third seal pattern is accelerated, enhancing the sealing of the liquid crystal display, and increasing productivity. Further, the second seal pattern enhances the adhesion between the substrate and the third seal pattern, protecting the cured third seal pattern from peeling and bubble formation.
Abstract:
A dual-display liquid crystal display structure having first and second display regions. A first substrate and a second substrate opposite the first substrate are provided. A reflective electrode pattern and a transparent electrode pattern are formed on the first substrate, wherein the reflective electrode pattern is located in the first display region and the transparent electrode pattern is located in the second display region. A filter is formed on an interior side of the second substrate. A common electrode is formed on the filter. A liquid crystal layer is disposed between the first substrate and the second substrate. A reflector is disposed on a side of the second substrate in the second display region.
Abstract:
A thin film transistor having a single LDD structure is provided. The single LDD structure is disposed between source/drain structures, and having a first side adjacent to a first one of the source/drain structures and a second side spaced from a second one of the source/drain structures by essentially a semiconductor material. Another thin film transistor having a first kind of LDD and a second kind of LDD structure is also provided. The second kind of LDD structure is adjacent to the first kind of LDD structure. The process for manufacturing such thin film transistor is also disclosed.
Abstract:
A method for manufacturing a liquid crystal display including a pixel portion having a pixel TFT as well as a drive circuit portion having a N-type TFT and a P-type TFT is disclosed. Firstly, an un-doped silicon layer, an N-type silicon layer and a metal layer are sequentially formed over a substrate; then, the metal layer and the N-type silicon layer are patterned to define source and drain electrodes for the N-type TFT, source and drain electrodes for the pixel TFT and a bottom electrode of a storage capacitor; thereafter, a gate oxide layer and a gate metal layer are sequentially formed on the overall surface; subsequently, the gate metal layer and the gate oxide layer are patterned to form a gate electrode for the N-type TFT, a gate electrode for the P-type TFT and a power electrode as well as a gate electrode for the pixel TFT and the storage capacitor; afterwards, a first photo resist pattern which bares a predetermined region for the P-type TFT is formed on the surface over the substrate, and then p-type impurities are implanted to form source and drain electrodes for the P-type TFT; subsequently, after the first photo resist pattern is removed, an annealing treatment is carried out to activate the impurities; and finally, a passivation layer of photosensitive resin is formed and patterned to form contact holes; an ITO layer is then formed and patterned to form connections of the N-type TFT, the P-type TFT, the pixel TFT and the storage capacitor.
Abstract:
A many-faceted LCD display, comprising a light guide pipe, a light source, a first optical means, a second optical means, a first LCD panel and a second LCD panel, is disclosed. The light guide pipe comprises a first surface capable and optional of attaching a reflector, a second surface capable and optional of attaching a reflector, a first edge, and a second edge capable and optional of attaching a reflector. The light source is provided at the first edge and capable of generating and emitting light into the light guide pipe. The first optical means is provided on the first surface of the light guide pipe, and the second optical means is provided on the second surface of the light guide pipe. The first LCD panel is provided on the first optical means, and the second LCD panel is provided on the second optical means.
Abstract:
A conductive floor mat is disclosed for collecting process particles and grounding the electrostatic charge accumulated on operators who stand on the mat. The conductive floor mat includes a frame assembly, a plurality of parallel spaced ribs, a plurality of parallel spaced supports and grounding wires. The frame assembly includes four frame members and a bottom surface. At least one of the four frame members has an angled top surface. Both ends of the ribs and supports are mounted to the opposite of the frame members. The supports are perpendicularly fixed to the ribs for increasing the supporting capacity thereon. The grounding wires are extending from the frame assembly to discharge the electrostatic charge accumulated on the operators.
Abstract:
A partially light-penetrative and partially light-reflective liquid crystal display (LCD) structure is disclosed. The LCD structure includes a top and a bottom substrate structures respectively including half wave plates; a light-penetrative electrode layer formed on a first portion of the bottom substrate structure; a dielectric layer formed on a second portion of the bottom substrate structure; a light-reflective electrode layer formed on the dielectric layer and connected to the light-penetrative electrode layer; and a liquid crystal layer disposed between the light-reflective and light-penetrative electrode layers and the top substrate structure. The thicknesses of the liquid crystal layer above the first and the second portions of the bottom substrate structure, respectively, are selected to allow the liquid crystal layer above the first portion to be equivalent to a half wave plate, and the liquid crystal layer above the second portion to be equivalent to a quarter wave plate.
Abstract:
A storage capacitor of a planar display is disclosed. The storage capacitor includes a substrate, a lower electrode, an insulator layer, and an upper electrode in space order. The lower electrode is made of a semiconductor material such as polysilicon. The upper electrode is made of metal or polysilicon. For the metallic upper electrode, the upper electrode is patterned to have a comb, fishbone or net shape in order to allow dopants penetrating therethrough to reach the lower electrode, thereby increasing the conductivity of the lower electrode. A process for fabricating such storage capacitor is also disclosed. For the case that both the upper and lower electrodes are made of polysilicon, two doping procedures of different doping intensities are performed to provide dopants for the upper and lower electrodes, respectively.