Abstract:
In order to estimate a braking force gradient in a low slip region including a steady travelling region, there is provided a device comprising a wheel speed sensor for detecting a wheel speed in a predetermined sampling period and outputting time series data of the wheel speed as a wheel speed signal, a break point frequency estimating section for estimating a break point frequency in a gain diagram that represents a frequency response of a first order lag model that approximates a transmission characteristics from road surface disturbances to wheel speed, and a braking force gradient estimating section for estimating a braking force gradient with respect to the estimated break point frequency on the basis of the map showing a relationship between braking force gradient and break point frequency stored in advance.
Abstract:
The present invention is directed to a monitor system for use in an automotive vehicle which includes wheel brake cylinders operatively mounted on wheels, respectively, and which includes a hydraulic pressure control apparatus for generating a hydraulic braking pressure in response to depression of a brake pedal. A difference calculating unit calculates a difference between a wheel speed of a wheel to be determined and a wheel speed of at least one reference wheel which is compared with a predetermined value, when a braking operation detection unit detects a braking operation. Then, a determination unit compares the difference with a predetermined value, and determines that the pressure circuit provided for the wheel to be determined is normal, when the difference is lower than the predetermined value. An output unit may be provided to produce an output signal when a period of time during which the difference continues to be equal to or greater than the predetermined value, exceeds a predetermined time.
Abstract:
The present invention is directed to a vehicle motion control system for maintaining vehicle stability by controlling the braking force applied to at least one wheel of a vehicle. A vehicle condition monitor is provided for monitoring a condition of the vehicle in motion. The braking force is applied by a braking apparatus to each wheel in response to depression of a brake pedal, and on the basis of an output of the monitor and irrespective of depression of the brake pedal. A control variable is provided for actuating the braking apparatus and set in accordance with at least a first parameter (e.g., wheel acceleration) and a second parameter (e.g., slip rate) which are provided on the basis of the output of the monitor, respectively, so that the control variable is varied in response to the output of the monitor. The control variable is integrated during the braking apparatus is actuated. The actuation of the braking apparatus starts when the control variable exceeds a predetermined level in magnitude, and is terminated when the control variable is within a predetermined zone provided in accordance with the first parameter and the second parameter, and when the controlled variable is less than a predetermined value.
Abstract:
The present invention is directed to a vehicle motion control system for maintaining stability of an automotive vehicle when the vehicle is in motion, by controlling a hydraulic braking pressure control apparatus to control a hydraulic braking pressure in each of wheel brake cylinders operatively mounted on each wheel of the vehicle to control a braking force applied thereto. A steering control unit and an anti-skid control unit are provided for actuating the apparatus to control the braking force applied to at least one of the wheels, respectively. A pressure increase compensating unit is provided for controlling a pressure increasing rate for increasing the braking pressure in at least one of the wheel brake cylinders to a desired pressure which is set after the pressure decreasing operation when the braking pressure with respect to at least one of the wheels is controlled in accordance with the control performed by the steering control unit and the control performed by the anti-skid control unit simultaneously, to be greater than a pressure increasing rate for increasing the braking pressure to the desired pressure in accordance with the control performed only by the anti-skid control unit.
Abstract:
The present invention is directed to a vehicle motion control system for maintaining vehicle stability by controlling the braking force applied to at least one wheel of a vehicle. A vehicle condition monitor monitors a condition of the vehicle in motion. A steering control unit actuates a braking unit to apply the braking force to at least one wheel on the basis of the output of the monitor and irrespective of depression of a brake pedal. An anti-skid control unit actuates the braking unit to control the braking force applied to at least one wheel in response to a rotational condition thereof during braking. A subordinate control unit actuates the braking unit to adjust the braking force control performed by the anti-skid control unit, in accordance with a predetermined relationship between the anti-skid control unit and the subordinate control unit. And, a priority control unit is adapted to give priority the anti-skid control unit over the steering control unit, and give priority the steering control unit over the subordinate control unit, when the condition for starting the braking force control performed by both of the anti-skid control unit and the steering control unit is fulfilled with respect to at least one wheel.
Abstract:
The invention is directed to a vehicle motion control system for maintaining vehicle stability by controlling the braking force applied to each wheel, in response to a condition of the vehicle in motion. A predetermined pressure increasing characteristic is provided for the hydraulic braking pressure which is supplied from a pressure control apparatus to wheel brake cylinders, on the basis of the vehicle condition, when the braking force controller initiates the control of the braking force to actuate the pressure control apparatus. And, a predetermined pressure decreasing characteristic is provided for the hydraulic braking pressure, when the braking force controller terminates the control of the braking force. The braking force controller is arranged to control the hydraulic braking pressure supplied from the pressure control apparatus to each wheel brake cylinder in accordance with the pressure increasing characteristic and the pressure decreasing characteristic to maintain the stability of the vehicle.
Abstract:
The steering stability of a moving vehicle is maintained by measuring an actual yaw rate of the vehicle and determining a desired yaw rate of the vehicle and producing an output signal in response to a comparison of the actual and desired yaw rates. The steering angle of steerable wheels of the vehicle is controlled in response to the output signal in a manner tending to substantially conform the actual yaw rate to the desired yaw rate, thereby maintaining vehicle stability. The steerable wheels are steered by a steering wheel, and are independently steered by a motor in response to the output signal. The amount of steering provided by the motor is controlled in dependence upon an estimated frictional coefficient between the vehicle and the road, or upon detected values of the environmental temperature and precipitation.
Abstract:
The steering stability of a moving vehicle is maintained by measuring an actual yaw rate of the vehicle and determining a desired yaw rate of the vehicle and producing an output signal in response to a comparison of the actual and desired yaw rates. The steering angle of steerable wheels of the vehicle is controlled in response to the output signal in a manner tending to substantially conform the actual yaw rate to the desired yaw rate, thereby maintaining vehicle stability. The steerable wheels are steered by a steering wheel, and are independently steered by a motor in response to the output signal. That motor may comprise a fluid motor or an electric motor.
Abstract:
There is disclosed a disk brake assembly which includes a brake pad adapted to be urged by an electric motor into braking engagement with a brake disk rotatable with, for example, the wheel of a vehicle, the brake pad being supported for pivotal movement about an axis in the plane parallel to and spaced laterally from the face of the brake disk and exposed substantially at a right angle to a line tangent to the periphery of and in the plane of the brake disk and downstream from the brake pad in the direction of rotation of the brake disk whereby the frictional force between the brake pad and the brake disk has a component complementary to the force exerted by the motor to urge the brake pads against the brake disk.
Abstract:
A vehicle brake control device generates rear wheel braking torque by an electric motor by pressing a friction member against a rotating member rotating together with the rear wheel, reduces rear wheel braking torque by controlling the electric motor based on a target energization amount calculated from a slip state quantity of the rear wheel, and rapidly stops electric motor rotation motion based on an adjusted target energization amount calculated from the target energization amount and a slip state quantity of a front wheel.