摘要:
Methods, apparatus, systems, and articles of manufacture to reduce end of stop jerk are disclosed. An example vehicle includes a user interface, a brake system, and a controller to execute instructions to detect a command to engage the brake system at a command brake pressure, estimate a time until the vehicle comes to a stop, and in response to determining that the time satisfies a time threshold, engage the brake system at a delivered brake pressure less than the command brake pressure.
摘要:
A vehicle control apparatus and a method for controlling the same are disclosed. The vehicle control apparatus includes an inputter, a determiner, and a controller. The inputter receives an automatic vehicle hold (AVH) switch operation signal from an AVH device, and receives a current vehicle movement value sensed by a sensing device and a current vehicle brake force value of a brake device that generates brake force in response to activation of the AVH device. The determiner determines whether the received AVH switch operation signal transitions from an ON state to an AVH entry state, determines whether vehicle movement occurs on the basis of the received current vehicle movement value during an AVH retention time in the AVH entry state, and determines that the current vehicle brake force value is in an abnormal state when vehicle movement occurs. The controller receives the current vehicle movement value and the current vehicle brake force value, and transmits a command for judgment to the determiner.
摘要:
A system for and method of determining angular position (e.g. pitch) of a vehicle. In accordance with an embodiment, a first angular rate of rotation of the vehicle about a first axis of rotation is detected using a first angular rate sensor mounted to the vehicle. A second angular rate of rotation of the vehicle about a second axis of rotation is detected using a second angular rate sensor mounted to the vehicle. The second axis of rotation is substantially orthogonal to the first axis of rotation. The angular position of the vehicle is determined based on a ratio of the first angular rate of rotation of the vehicle and the second angular rate of rotation of the vehicle.
摘要:
A vehicle comprises a speed-sensing device outputting a signal indicating a velocity of the vehicle, a brake system outputting a signal for indicating when the brake system is being commanded to a brake torque providing state, and a trailer brake controller coupled to the speed-sensing device and the brake system. The trailer brake controller utilizes the signal of the speed-sensing device to determine when the vehicle is in a zero-velocity state and utilizes the signal of the brake system to determine when the brake system is being commanded to the brake torque providing state. The trailer brake controller transitions a brake-actuating output signal thereof from a speed-dependent zero-velocity output signal value to a trailer hold zero-velocity output signal value greater than the speed-dependent zero-velocity output signal value when it is determined that the brake system is in the brake torque providing state while the vehicle is in the zero-velocity state.
摘要:
A method of controlling a three-wheeled vehicle comprises: determining a state of a load sensor associated with a portion of vehicle; selecting a first start mass when the load sensor is in a non-loaded state; selecting a second start mass when the load sensor is in a loaded state; determining at least one vehicle parameter during operation of the vehicle; determining a calculated mass based at least in part on the at least one vehicle parameter; determining an effective mass based at least in part on the calculated mass and a selected one of the first and second start masses; defining an output of an electronic stability system of the vehicle based at least in part on the effective mass; and controlling a stability of the vehicle using the output of the electronic stability system.
摘要:
In order to achieve a vehicle wheel (10) slip relative to a roadway (12) while braking the vehicle, said slip being as advantageous as possible, the rotational speed (w) of the wheel (10) can be actively reduced by an ABS by means of a braking intervention and passively allowed to accelerate again via the roadway (12) when the brake is released. The slip of the wheel (10) oscillates by an optimal slip value during the ABS regulating process. The aim of the invention is to improve an anti-lock braking system for a vehicle. In the method according to the invention, at least one wheel (10) of the vehicle is supplied with a braking torque (Mb) in order to temporarily reduce a travel speed (v) of the vehicle relative to a rolling surface (12), said braking torque acting against a rotating direction (14) of the wheel (10). Additionally, the wheel (10) is temporarily supplied with an acceleration torque (Ma) by means of an accelerating device of the vehicle during the reduction of the travel speed (v), said acceleration torque acting in the rotating direction (14).
摘要:
A vehicle brake hydraulic pressure control apparatus includes a wheel speed acquiring section, a vehicle body deceleration calculator, and a switch section. The wheel speed acquiring section is configured to acquire a wheel speed from a wheel speed sensor. The vehicle body deceleration calculator is configured to calculate a vehicle body deceleration. The switch section is configured to switch control from the regenerative cooperation control to the hydraulic pressure control, based on (i) a wheel deceleration which is determined based on the wheel speed and (ii) the vehicle body deceleration. The vehicle body deceleration calculator is configured to calculate the vehicle body deceleration based on a required deceleration which corresponds to a driver's operation of a braking pedal.
摘要:
The invention relates to a method of managing the braking of an aircraft 1 having at least one controllable brake 9 for braking the aircraft 1 when the aircraft 1 is on the ground and as a function of a braking setpoint C, wherein the method includes correcting the braking setpoint as a function of the pitch angle θ of the aircraft 1 during braking.
摘要:
A normality detector includes a steering angle yaw rate calculator, a first difference calculator, a lateral G yaw rate calculator, a second difference calculator, and a normality determination section. The steering angle yaw rate calculator calculates a steering angle yaw rate. The first difference calculator calculates a first difference which is a difference between the steering angle yaw rate and an actual yaw rate. The lateral G yaw rate calculator calculates a lateral G yaw rate. The second difference calculator calculates a second difference which is a difference between the lateral G yaw rate and the actual yaw rate. The normality determination section determines that the yaw rate detector is in a normal state when the first difference falls within a first predetermined value and the second difference falls within a second predetermined value.
摘要:
A vehicle comprising a seat defining a driver seat portion and a passenger seat portion, an electronic stability system, adapted to receive inputs from a load sensor, a wheel rotation sensor and a lateral acceleration sensor, the electronic stability system adapted to provide outputs to at least one of the brake system for braking the vehicle, and the engine control unit to change the power output transmitted to the wheels by the engine, the electronic stability system using a first calibration to determine the outputs when the load sensor is in a non-loaded state and a second calibration to determine the outputs when the load sensor is in a loaded state.