Abstract:
Techniques for controlling patch-usage in image synthesis are described. In implementations, a curve is fitted to a set of sorted matching errors that correspond to potential source-to-target patch assignments between a source image and a target image. Then, an error budget is determined using the curve. In an example, the error budget is usable to identify feasible patch assignments from the potential source-to-target patch assignments. Using the error budget along with uniform patch-usage enforcement, source patches from the source image are assigned to target patches in the target image. Then, at least one of the assigned source patches is assigned to an additional target patch based on the error budget. Subsequently, an image is synthesized based on the source patches assigned to the target patches.
Abstract:
Systems and methods are disclosed for segregating target individuals represented in a probe digital image from background pixels in the probe digital image. In particular, in one or more embodiments, the disclosed systems and methods train a neural network based on two or more of training position channels, training shape input channels, training color channels, or training object data. Moreover, in one or more embodiments, the disclosed systems and methods utilize the trained neural network to select a target individual in a probe digital image. Specifically, in one or more embodiments, the disclosed systems and methods generate position channels, training shape input channels, and color channels corresponding the probe digital image, and utilize the generated channels in conjunction with the trained neural network to select the target individual.
Abstract:
Systems and methods are disclosed for segregating target individuals represented in a probe digital image from background pixels in the probe digital image. In particular, in one or more embodiments, the disclosed systems and methods train a neural network based on two or more of training position channels, training shape input channels, training color channels, or training object data. Moreover, in one or more embodiments, the disclosed systems and methods utilize the trained neural network to select a target individual in a probe digital image. Specifically, in one or more embodiments, the disclosed systems and methods generate position channels, training shape input channels, and color channels corresponding the probe digital image, and utilize the generated channels in conjunction with the trained neural network to select the target individual.
Abstract:
Image distractor detection and processing techniques are described. In one or more implementations, a digital medium environment is configured for image distractor detection that includes detecting one or more locations within the image automatically and without user intervention by the one or more computing devices that include one or more distractors that are likely to be considered by a user as distracting from content within the image. The detection includes forming a plurality of segments from the image by the one or more computing devices and calculating a score for each of the plurality of segments that is indicative of a relative likelihood that a respective said segment is considered a distractor within the image. The calculation is performed using a distractor model trained using machine learning as applied to a plurality images having ground truth distractor locations.
Abstract:
Embodiments of the present invention provide systems, methods, and computer storage media directed at image synthesis utilizing an active mask. In one embodiment, input is received that identifies a target region within an image that is to be synthesized. A patch synthesis technique can then be performed to synthesize the target region based on portions of a source region that are identified by the patch synthesis technique. In embodiments, the patch synthesis technique includes, for at least one iteration, generating an active mask that indicates one or more portions of the target region as inactive. This active mask can be utilized by at least one process of the patch synthesis technique to ignore the one or more portions indicated as inactive by the active mask for the at least one iteration of the patch synthesis technique. Other embodiments may be described and/or claimed.
Abstract:
Image distractor detection and processing techniques are described. In one or more implementations, a digital medium environment is configured for image distractor detection that includes detecting one or more locations within the image automatically and without user intervention by the one or more computing devices that include one or more distractors that are likely to be considered by a user as distracting from content within the image. The detection includes forming a plurality of segments from the image by the one or more computing devices and calculating a score for each of the plurality of segments that is indicative of a relative likelihood that a respective said segment is considered a distractor within the image. The calculation is performed using a distractor model trained using machine learning as applied to a plurality images having ground truth distractor locations.
Abstract:
Example systems and methods for classifying visual patterns into a plurality of classes are presented. Using reference visual patterns of known classification, at least one image or visual pattern classifier is generated, which is then employed to classify a plurality of candidate visual patterns of unknown classification. The classification scheme employed may be hierarchical or nonhierarchical. The types of visual patterns may be fonts, human faces, or any other type of visual patterns or images subject to classification.
Abstract:
Techniques and apparatus for automatic upright adjustment of digital images. An automatic upright adjustment technique is described that may provide an automated approach for straightening up slanted features in an input image to improve its perceptual quality. This correction may be referred to as upright adjustment. A set of criteria based on human perception may be used in the upright adjustment. A reprojection technique that implements an optimization framework is described that yields an optimal homography for adjustment based on the criteria and adjusts the image according to new camera parameters generated by the optimization. An optimization-based camera calibration technique is described that simultaneously estimates vanishing lines and points as well as camera parameters for an image; the calibration technique may, for example, be used to generate estimates of camera parameters and vanishing points and lines that are input to the reprojection technique.
Abstract:
An image prior as a shared basis mixture model is described. In one or more implementations, a plurality of image patches are generated from one or more images. A shared basis mixture model is learned to model an image patch distribution of the plurality of image patches from the one or more images as part of a Gaussian mixture model. An image may then be reconstructed using the shared basis mixture model as an image prior.
Abstract:
Techniques and apparatus for automatic upright adjustment of digital images. An automatic upright adjustment technique is described that may provide an automated approach for straightening up slanted features in an input image to improve its perceptual quality. This correction may be referred to as upright adjustment. A set of criteria based on human perception may be used in the upright adjustment. A reprojection technique that implements an optimization framework is described that yields an optimal homography for adjustment based on the criteria and adjusts the image according to new camera parameters generated by the optimization. An optimization-based camera calibration technique is described that simultaneously estimates vanishing lines and points as well as camera parameters for an image; the calibration technique may, for example, be used to generate estimates of camera parameters and vanishing points and lines that are input to the reprojection technique.