Abstract:
Diffusion barrier film layers and methods of manufacture and use are provided. The films comprise boron-doped TiCl4-based titanium nitride, and provide an improved diffusion barrier having good adhesive, electrical conductivity, and anti-diffusion properties. The films can be formed on a silicon substrate without an underlying contact layer such as TiSix, an improvement in the fabrication of contacts to shallow junctions and other miniature components of integrated circuits.
Abstract:
A field emission array includes a dielectric structure with at least two dielectric layers between the cathode and anode grid thereof. The lower dielectric layer is planarized to minimize the occurrence of electrical shorts between the cathode and anode grid of the field emission array. Thus, the upper dielectric layer is substantially free of any electrically conductive defects or imperfections that extend through the lower dielectric layer. In addition, the field emission array includes an array of emitter tips, which are laterally surrounded and may be spaced apart from the dielectric structure. The field emission array may also include a grid over the dielectric structure and the emitter tips, with the emitter tips being exposed through grid openings or apertures.
Abstract:
Conductive contacts in a semiconductor structure, and methods for forming the conductive components are provided. The contacts are useful for providing electrical connection to active components beneath an insulation layer in integrated circuits such as memory devices. The conductive contacts comprise boron-doped TiCl4-based titanium nitride, and possess a sufficient level adhesion to the insulative layer to eliminate peeling from the sidewalls of the contact opening and cracking of the insulative layer when formed to a thickness of greater than about 200 angstroms.
Abstract:
A first cleaning is conducted on a plasma enhanced chemical vapor deposition chamber at room ambient pressure. After the first cleaning, elemental titanium comprising layers are chemical vapor deposited on a first plurality of substrates within the chamber using at least TiCl4. Thereafter, titanium silicide comprising layers are plasma enhanced chemical vapor deposited on a second plurality of substrates within the chamber using at least TiCl4 and a silane. Thereafter, a second cleaning is conducted on the chamber at ambient room pressure. In one implementation after the first cleaning, an elemental titanium comprising layer is chemical vapor deposited over internal surfaces of the chamber while no semiconductor substrate is received within the chamber. In another implementation, a titanium silicide comprising layer is chemical vapor deposited over internal surfaces of the chamber while no semiconductor substrate is received within the chamber.
Abstract:
A method for fabricating row lines and pixel openings of a field emission array that employs only two masks. A first mask is disposed over electrically conductive material and semiconductive material and includes apertures that are alignable between rows of pixels of the field emission array. Row lines of the field emission array are defined through the first mask. A passivation layer is then disposed over at least selected portions of the field emission array. A second mask, including apertures alignable over the pixel regions of the field emission array, is disposed over the passivation layer. The second mask is used in defining openings through the passivation layer and over the pixel regions of the field emission array. Conductive material exposed through the apertures of the second mask may also be removed to expose the underlying semiconductive grid and to further define the pixel openings.
Abstract:
A method of fabricating row lines and pixel openings of a field emission array. The method employs only two masks. A first mask employed in the method includes apertures alignable between rows of pixels of the field emission array. Electrically conductive material and semiconductive material exposed through the apertures are removed to define the row lines of the field emission array. A passivation layer is then disposed over at least selected portions of the field emission array. Then a second mask, including apertures alignable over the pixel regions of the field emission array, is disposed over the passivation layer of the field emission array. Passivation material exposed through the apertures of the second mask is removed to define openings through the passivation layer and over the pixel regions of the field emission array. Conductive material exposed through the apertures of the second mask may then be removed to expose the underlying semiconductive grid and to further define the pixel openings.
Abstract:
A field emission array includes a dielectric structure with at least two dielectric layers between the cathode and anode grid thereof. The lower dielectric layer is planarized to minimize the occurrence of electrical shorts between the cathode and anode grid of the field emission array. Thus, the upper dielectric layer is substantially free of any electrically conductive defects or imperfections that extend through the lower dielectric layer. In addition, the field emission array includes an array of emitter tips, which are laterally surrounded and may be spaced apart from the dielectric structure. The field emission array may also include a grid over the dielectric structure and the emitter tips, with the emitter tips being exposed through grid openings or apertures.
Abstract:
A method of fabricating a field emission array that employs a single mask to define the emitter tips thereof and their corresponding resistors. A layer of conductive material is disposed over a substrate of the field emission array. A plurality of substantially mutually parallel conductive lines is defined from the layer of conductive material. At least one layer of semiconductive material or conductive material is disposed over the conductive lines and over the regions of the substrate exposed between adjacent conductive lines. A mask material is disposed over the layer of semiconductive material or conductive material, substantially above each of the conductive lines. Portions of the layer of semiconductive material or conductive material exposed through the mask material may be removed to expose substantially longitudinal center portions of the conductive lines. Other portions of the layer of semiconductive material or conductive material may remain over peripheral lateral edges of the conductive lines. The mask material may be removed and the layer of semiconductive material or conductive material planarized. A mask is disposed over the field emission array and portions of the layer of semiconductive material or conductive material removed therethrough to define emitter tips and their corresponding resistors. The substantially longitudinal center portion of each of the conductive lines may be removed to electrically isolate adjacent columns of pixels of the field emission array from each other. Field emission arrays fabricated by the method of the present invention are also within the scope of the present invention.
Abstract:
A method of fabricating row lines and pixel openings of a field emission array. The method employs only two masks. A first mask employed in the method includes apertures alignable between rows of pixels of the field emission array. Electrically conductive material and semiconductive material exposed through the apertures are removed to define the row lines of the field emission array. A passivation layer is then disposed over at least selected portions of the field emission array. Then a second mask, including apertures alignable over the pixel regions of the field emission array, is disposed over the passivation layer of the field emission array. Passivation material exposed through the apertures of the second mask is removed to define openings through the passivation layer and over the pixel regions of the field emission array. Conductive material exposed through the apertures of the second mask may then be removed to expose the underlying semiconductive grid and to further define the pixel openings.
Abstract:
A method for fabricating field emission arrays employs a single mask to define emitter tips, their corresponding resistors, and, optionally, conductive lines. One or more material layers from which the emitter tips and resistors will be defined are formed over and laterally adjacent substantially parallel conductive lines. The exposed surface of the layer or layers of emitter tip and resistor material or materials may be planarized. The emitter tips and underlying resistors are then defined. Substantially longitudinal center portions of the conductive lines may be exposed between adjacent lines of emitter tips, with at least a lateral edge portion of each conductive line being shielded by material that remains following the formation of the emitter tips and resistors. The exposed portions of the conductive lines may be removed in order to define conductive traces. Field emission arrays and display devices fabricated by such methods are also disclosed.